11,908 research outputs found

    A Three-Dimensional Position Architecture Using Digital TDE Receiver and Cylindrical Array Antenna

    Get PDF
    AbstractThe robust three-dimensional position architecture is proposed in the paper, where the hybrid time difference of arrival (TDOA) and direction of arrival (DOA) position system was designed to backup the four-station TDOA position system. The digital time delay estimation (TDE) receiver is used for TDOA measurement and the cylindrical array antenna is used for DOA measurement. The general formula of linear phase compensation for cylindrical array antenna in horizontal plane is derived. The detection probability of the TDE receiver and the circular error probability (CEP) of the position systems over Rayleigh fading channel were numerically computed in three-dimensional space. Simulations indicate that the position accuracy of the four-station TDOA position system is degraded but the location function can be retained by the hybrid TDOA and DOA position system when any one of four-stations is out of work

    TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha

    Get PDF
    The bacterial type VI secretion system (T6SS) delivers effectors into eukaryotic host cells or toxins into bacterial competitor for survival and fitness. The T6SS is positively regulated by the threonine phosphorylation pathway (TPP) and negatively by the T6SS-accessory protein TagF. Here, we studied the mechanisms underlying TagF-mediated T6SS repression in two distinct bacterial pathogens, Agrobacterium tumefaciens and Pseudomonas aeruginosa. We found that in A. tumefaciens, T6SS toxin secretion and T6SS-dependent antibacterial activity are suppressed by a two-domain chimeric protein consisting of TagF and PppA, a putative phosphatase. Remarkably, this TagF domain is sufficient to post-translationally repress the T6SS, and this inhibition is independent of TPP. This repression requires interaction with a cytoplasmic protein, Fha, critical for activating T6SS assembly. In P. aeruginosa, PppA and TagF are two distinct proteins that repress T6SS in a TPP-dependent and -independent pathways, respectively. P. aeruginosa TagF interacts with Fha1, suggesting that formation of this complex represents a conserved TagF-mediated regulatory mechanism. Using TagF variants with substitutions of conserved amino acid residues at predicted protein-protein interaction interfaces, we uncovered evidence that the TagF-Fha interaction is critical for TagF-mediated T6SS repression in both bacteria. TagF inhibits T6SS without affecting T6SS protein abundance in A. tumefaciens, but TagF overexpression reduces the protein levels of all analyzed T6SS components in P. aeruginosa. Our results indicate that TagF interacts with Fha, which in turn could impact different stages of T6SS assembly in different bacteria, possibly reflecting an evolutionary divergence in T6SS control

    Single-pass high-gain tapered free-electron laser with transverse diffraction in the postsaturation regime

    Get PDF
    It has been well known that the resonant interaction of an ultrarelativistic electron beam and the radiation field in the single-pass high-gain free electron laser (FEL) amplifier leads to the optical gain guiding. The transverse Laplacian term of the slowly varying wave equation in the linear regime can be approximated as a constant detuning parameter, i.e., vertical bar del(2)(perpendicular to)vertical bar k(R)/z(R) where k(R) is the resonant wave number and z(R) is the Rayleigh range of the laser. In the post-saturation regime, the radiation power begins to oscillate about an equilibrium for the untapered case while continues to grow by undulator tapering. Moreover, in this regime the gain guiding decreases and the simple constant detune is no longer valid. In this paper we study the single-pass high-gain FEL performance in the post-saturation regime with inclusion of diffraction effect and undulator tapering. Our analysis relies upon two constants of motion, one from the energy conservation and the other from the adiabatic invariant of the action variable. By constructing a two-dimensional axisymmetric wave equation and the coupled one-dimensional electron dynamical equations, the performance of a tapered FEL in the postsaturation regime can be analyzed, including the fundamental mode profile, the power efficiency and the scaled energy spread. We begin the analytical investigation with two different axisymmetric electron beam profiles, the uniform and bounded parabolic ones. It is found that the tapered FEL power efficiency can be smaller but close to the taper ratio provided the resonant phase remains constant and the beam-wave is properly matched. Such a tapered efficiency is nearly independent of transverse electron beam size before significant electron detrapping occurs. This is essentially different from the untapered case, where the power extraction efficiency is around the essential FEL gain bandwidth (or rho, the Pierce or FEL parameter) and depends on the beam size. It is also found that the power enhancement due to undulator tapering is attributed more by the field increase outside the transverse electron beam than that inside the transverse electron beam. Several scaling properties on the taper ratio and the transverse electron beam size are also discussed in this paper.11Ysciescopu

    Heavy X-ray obscuration in the most-luminous galaxies discovered by WISE

    Get PDF
    Hot Dust-Obscured Galaxies (Hot DOGs) are hyperluminous (L8−1000 Όm>1013 L⊙L_{\mathrm{8-1000\,\mu m}}>10^{13}\,\mathrm{L_\odot}) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most-luminous (Lbol≳1014 L⊙L_{\mathrm{bol}}\gtrsim10^{14}\, L_\odot) known Hot DOGs at z=2−4.6z=2-4.6. Five of them are covered by long-exposure (10−7010-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116−-0505) is a Compton-thick candidate, with column density NH=(1.0−1.5)×1024 cm−2N_H=(1.0-1.5)\times10^{24}\,\mathrm{cm^{-2}} derived from X-ray spectral fitting. The remaining 15 Hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 is individually detected; therefore we applied a stacking analysis to investigate their average emission. From hardness-ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be logNH [cm−2]>23.5N_H\,\mathrm{[cm^{-2}]}>23.5 and LX≳1044 erg cm−2 s−1L_X\gtrsim10^{44}\,\mathrm{erg\,cm^{-2}\,s^{-1}}, which are consistent with results for individually detected sources. We also investigated the LX−L6ÎŒmL_X-L_{6\mu\mathrm{m}} and LX−LbolL_X-L_{bol} relations, finding hints that Hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured QSOs are needed to derive solid conclusions.Comment: MNRAS, accepted 2017 November 29 . Received 2017 November 29 ; in original form 2017 October 11. 15 pages, 6 figure

    Broken time-reversal symmetry in Josephson junction involving two-band superconductors

    Full text link
    A novel time-reversal symmetry breaking state is found theoretically in the Josephson junction between the two-gap superconductor and the conventional s-wave superconductor. This occurs due to the frustration between the three order parameters analogous to the two antiferromagnetically coupled XY-spins put under a magnetic field. This leads to the interface states with the energies inside the superconducting gap. Possible experimental observations of this state with broken time-reversal symmetry are discussed.Comment: 9 pages, 1 figur

    Decreased GTPase activity of K- ras mutants deriving from human functional adrenocortical tumours

    Get PDF
    Our previous studies have shown that seven out of 15 patients with adrenocortical tumours contained K- ras gene mutation. In addition, the mutation type was a multiple-site mutation, and the hot spots were located at codons 15, 16, 18 and 31, which were different from those reported before (codons 12, 13 and 61). To understand whether the mutation hot spots in human adrenocortical tumours were associated with activation of K- Ras oncogene and the alterations of its biocharacteristics, mutant K- Ras genes were cloned from tumour tissues and then constructed with expression vector pBKCMV. Mutant K- Ras genes were expressed at high levels in Escherichia coli and the resultant K- Ras proteins were shown to be functional with respect to their well-known specific, high-affinity, GDP/GTP binding. The purified K- Ras protein from E. coli were then measured for their intrinsic GTPase activity and the GTPase activity in the presence of GTPase-activating protein for Ras. The results showed that the wild-type cellular K- Ras protein (p21BN) exhibits about ten times higher intrinsic GTPase activity than the activated protein (p21BM3) encoded by mutant K- Ras gene, which mutated at codon 60. With regards to the codon 15, 16, 18 and 31 mutant K- Ras proteins (p21BM2), the GTPase activity in the presence of GAP is much lower than that of the normal K- Ras protein, whereas the intrinsic GTPase activity is nearly the same as that of the normal K- Ras protein. These results indicated that mutations at these hot spots of K- Ras gene were indeed activated K- Ras oncogene in adrenocortical tumours; however, their association with tumors needs further experiments to prove. © 2000 Cancer ResearchCampaig

    Universal geometrical factor of protein conformations as a consequence of energy minimization

    Full text link
    The biological activity and functional specificity of proteins depend on their native three-dimensional structures determined by inter- and intra-molecular interactions. In this paper, we investigate the geometrical factor of protein conformation as a consequence of energy minimization in protein folding. Folding simulations of 10 polypeptides with chain length ranging from 183 to 548 residues manifest that the dimensionless ratio (V/(A)) of the van der Waals volume V to the surface area A and average atomic radius of the folded structures, calculated with atomic radii setting used in SMMP [Eisenmenger F., et. al., Comput. Phys. Commun., 138 (2001) 192], approach 0.49 quickly during the course of energy minimization. A large scale analysis of protein structures show that the ratio for real and well-designed proteins is universal and equal to 0.491\pm0.005. The fractional composition of hydrophobic and hydrophilic residues does not affect the ratio substantially. The ratio also holds for intrinsically disordered proteins, while it ceases to be universal for polypeptides with bad folding properties.Comment: 6 pages, 1 table, 4 figure

    Single-stage sealing of ceramic tiles by means of high power diode laser radiation

    Get PDF
    An investigation has been carried out using a 60 W high power diode laser (HPDL) to determine the feasibility of sealing the void between adjoining ceramic tiles with a specially developed grout material. A single-stage process has subsequently been devised using a new grout material which consists of two distinct components: a crushed ceramic tile mix substrate and a glazed enamel surface; the crushed ceramic tile mix provides a tough, inexpensive bulk substrate, whilst the enamel provides an impervious surface glaze. HPDL processing has resulted in crack and porosity free seals produced in normal atmospheric conditions. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 750 W/cm2 and at rates of up to 420 mm/min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze
    • 

    corecore