886 research outputs found
Faraday effect : a field theoretical point of view
We analyze the structure of the vacuum polarization tensor in the presence of
a background electromagnetic field in a medium. We use various discrete
symmetries and crossing symmetry to constrain the form factors obtained for the
most general case. From these symmetry arguments, we show why the vacuum
polarization tensor has to be even in the background field when there is no
background medium. Taking then the background field to be purely magnetic, we
evaluate the vacuum polarization to linear order in it. The result shows the
phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization
of a plane polarized light passing through this background. We find that the
usual expression for Faraday rotation, which is derived for a non-degenerate
plasma in the non-relativistic approximation, undergoes substantial
modification if the background is degenerate and/or relativistic. We give
explicit expressions for Faraday rotation in completely degenerate and
ultra-relativistic media.Comment: 20 pages, Latex, uses axodraw.st
Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on R^2
We consider the Landau-Lifshitz equations of ferromagnetism (including the
harmonic map heat-flow and Schroedinger flow as special cases) for degree m
equivariant maps from R^2 to S^2. If m \geq 3, we prove that near-minimal
energy solutions converge to a harmonic map as t goes to infinity (asymptotic
stability), extending previous work down to degree m = 3. Due to slow spatial
decay of the harmonic map components, a new approach is needed for m=3,
involving (among other tools) a "normal form" for the parameter dynamics, and
the 2D radial double-endpoint Strichartz estimate for Schroedinger operators
with sufficiently repulsive potentials (which may be of some independent
interest). When m=2 this asymptotic stability may fail: in the case of
heat-flow with a further symmetry restriction, we show that more exotic
asymptotics are possible, including infinite-time concentration (blow-up), and
even "eternal oscillation".Comment: 34 page
QED Effective Action at Finite Temperature: Two-Loop Dominance
We calculate the two-loop effective action of QED for arbitrary constant
electromagnetic fields at finite temperature T in the limit of T much smaller
than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the
thermal excitation of the internal photon. As an application, we study light
propagation and photon splitting in the presence of a magnetic background field
at low temperature. We furthermore discover a thermally induced contribution to
pair production in electric fields.Comment: 34 pages, 4 figures, LaTe
Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics
We extend the exact multilocal renormalization group (RG) method to study the
flow of the effective action functional. This important physical quantity
satisfies an exact RG equation which is then expanded in multilocal components.
Integrating the nonlocal parts yields a closed exact RG equation for the local
part, to a given order in the local part. The method is illustrated on the O(N)
model by straightforwardly recovering the exponent and scaling
functions. Then it is applied to study the glass phase of the Cardy-Ostlund,
random phase sine Gordon model near the glass transition temperature. The
static correlations and equilibrium dynamical exponent are recovered and
several new results are obtained. The equilibrium two-point scaling functions
are obtained. The nonequilibrium, finite momentum, two-time response and
correlations are computed. They are shown to exhibit scaling forms,
characterized by novel exponents , as well as
universal scaling functions that we compute. The fluctuation dissipation ratio
is found to be non trivial and of the form . Analogies and
differences with pure critical models are discussed.Comment: 33 pages, RevTe
Spontaneous CP Violating Phase as The CKM Matrix Phase
We propose that the CP violating phase in the CKM mixing matrix is identical
to the CP phases responsible for the spontaneous CP violation in the Higgs
potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is
constructed to realize this idea. The CP violating phase does not vanish when
all Higgs masses become large. There are flavor changing neutral current (FCNC)
interactions mediated by neutral Higgs bosons at the tree level. However,
unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms
of the quark masses and CKM mixing angles. Implications for meson-anti-meson
mixing, including recent data on mixing, and neutron electric dipole
moment (EDM) are studied. We find that the neutral Higgs boson masses can be at
the order of one hundred GeV. The neutron EDM can be close to the present
experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde
Indirect search for dark matter: prospects for GLAST
Possible indirect detection of neutralino, through its gamma-ray annihilation
product, by the forthcoming GLAST satellite from our galactic halo, M31, M87
and the dwarf galaxies Draco and Sagittarius is studied. Gamma-ray fluxes are
evaluated for the two representative energy thresholds, 0.1 GeV and 1.0 GeV, at
which the spatial resolution of GLAST varies considerably. Apart from dwarfs
which are described either by a modified Plummer profile or by a
tidally-truncated King profiles, fluxes are compared for halos with central
cusps and cores. It is demonstrated that substructures, irrespective of their
profiles, enhance the gamma-ray emission only marginally. The expected
gamma-ray intensity above 1 GeV at high galactic latitudes is consistent with
the residual emission derived from EGRET data if the density profile has a
central core and the neutralino mass is less than 50 GeV, whereas for a central
cusp only a substantial enhancement would explain the observations. From M31,
the flux can be detected above 0.1 GeV and 1.0 GeV by GLAST only if the
neutralino mass is below 300 GeV and if the density profile has a central cusp,
case in which a significant boost in the gamma-ray emission is produced by the
central black hole. For Sagittarius, the flux above 0.1 GeV is detectable by
GLAST provided the neutralino mass is below 50 GeV. From M87 and Draco the
fluxes are always below the sensitivity limit of GLAST.Comment: 14 Pages, 7 Figures, 3 Tables, version to appear on Physical Review
Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a 'blueprint'
An unusual, intercalated photonic nanoarchitecture was discovered in the elytra of Taiwanese Trigonophorus rothschildi varians beetles. It consists of a multilayer structure intercalated with a random distribution of cylindrical holes normal to the plane of the multilayer. The nanoarchitectures were characterized structurally by scanning electron microscopy and optically by normal incidence, integrated and goniometric reflectance measurements. They exhibit an unsaturated specular and saturated non-specular component of the reflected light. Bioinspired, artificial nanoarchitectures of similar structure and with similar properties were realized by drilling holes of submicron size in a multilayer structure, showing that such photonic nanoarchitectures of biological origin may constitute valuable blueprints for artificial photonic materials
Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity
Long-term memory formation is known to be critically dependent upon de novo gene expression in the brain. As a consequence, pharmacological enhancement of the transcriptional processes mediating long-term memory formation provides a potential therapeutic strategy for cognitive disorders involving aberrant neuroplasticity. Here we focus on the identification and characterization of small molecule inhibitors of histone deacetylases (HDACs) as enhancers of CREB (cAMP response element-binding protein)-regulated transcription and modulators of chromatin-mediated neuroplasticity. Using a CREB reporter gene cell line, we screened a library of small molecules structurally related to known HDAC inhibitors leading to the identification of a probe we termed crebinostat that produced robust activation of CREB-mediated transcription. Further characterization of crebinostat revealed its potent inhibition of the deacetylase activity of recombinant class I HDACs 1, 2, 3, and class IIb HDAC6, with weaker inhibition of the class I HDAC8 and no significant inhibition of the class IIa HDACs 4, 5, 7, and 9. In cultured mouse primary neurons, crebinostat potently induced acetylation of both histone H3 and histone H4 as well as enhanced the expression of the CREB target gene Egr1 (early growth response 1). Using a hippocampus-dependent, contextual fear conditioning paradigm, mice systemically administered crebinostat for a ten day time period exhibited enhanced memory. To gain insight into the molecular mechanisms of memory enhancement by HDAC inhibitors, whole genome transcriptome profiling of cultured mouse primary neurons treated with crebinostat, combined with bioinformatic analyses of CREB-target genes, was performed revealing a highly connected proteinâprotein interaction network reflecting modules of genes important to synaptic structure and plasticity. Consistent with these findings, crebinostat treatment increased the density of synapsin-1 punctae along dendrites in cultured neurons. Finally, crebinostat treatment of cultured mouse primary neurons was found to upregulate Bdnf (brain-derived neurotrophic factor) and Grn (granulin) and downregulate Mapt (tau) gene expressionâgenes implicated in aging-related cognitive decline and cognitive disorders. Taken together, these results demonstrate that crebinostat provides a novel probe to modulate chromatin-mediated neuroplasticity and further suggests that pharmacological optimization of selective of HDAC inhibitors may provide an effective therapeutic approach for human cognitive disorders.National Institutes of Health (U.S.) (R01DA028301)National Institutes of Health (U.S.) (R01NS051874)Stanley Medical Research InstituteHoward Hughes Medical Institut
Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity
In various astrophysical contexts, we analyze self-similar behaviours of
magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized
gas under self-gravity with the specific entropy conserved along streamlines.
In particular, this MHD model analysis frees the scaling parameter in the
conventional polytropic self-similar transformation from the constraint of
with being the polytropic index and therefore
substantially generalizes earlier analysis results on polytropic gas dynamics
that has a constant specific entropy everywhere in space at all time. On the
basis of the self-similar nonlinear MHD ordinary differential equations, we
examine behaviours of the magnetosonic critical curves, the MHD shock
conditions, and various asymptotic solutions. We then construct global
semi-complete self-similar MHD solutions using a combination of analytical and
numerical means and indicate plausible astrophysical applications of these
magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS
- âŠ