22,727 research outputs found

    Marine ice-sheet profiles and stability under Coulomb basal conditions

    Get PDF
    The behavior of marine-terminating ice sheets, such as the West Antarctic ice sheet, is of interest due to the possibility of rapid grounding-line retreat and consequent catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where the most popular approach is to relate the ice-sheet velocity to a power-law function of basal stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb friction behavior. Here we address how Coulomb conditions modify ice-sheet profiles and stability criteria. The basal rheology necessarily transitions to Coulomb friction near the grounding line, due to low effective stresses, leading to changes in ice-sheet properties within a narrow boundary layer. Ice-sheet profiles ‘taper off’ towards a flatter upper surface, compared with the power-law case, and basal stresses vanish at the grounding line, consistent with observations. In the Coulomb case, the grounding-line ice flux also depends more strongly on flotation ice thickness, which implies that ice sheets are more sensitive to climate perturbations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water than with a power-law rheology. This implies that smaller perturbations are required to push the grounding line into regions of negative bed slope, where it would become unstable. These results have important implications for ice-sheet stability in a warming climate

    Metal-Insulator-Like Behavior in Semimetallic Bismuth and Graphite

    Full text link
    When high quality bismuth or graphite crystals are placed in a magnetic field directed along the c-axis (trigonal axis for bismuth) and the temperature is lowered, the resistance increases as it does in an insulator but then saturates. We show that the combination of unusual features specific to semimetals, i.e., low carrier density, small effective mass, high purity, and an equal number of electrons and holes (compensation), gives rise to a unique ordering and spacing of three characteristic energy scales, which not only is specific to semimetals but which concomitantly provides a wide window for the observation of apparent field induced metal-insulator behavior. Using magnetotransport and Hall measurements, the details of this unusual behavior are captured with a conventional multi-band model, thus confirming the occupation by semimetals of a unique niche between conventional metals and semiconductors.Comment: 4 pages, 4 figs, data and discussion on bismuth added, final published versio

    Marine ice-sheet profiles and stability under Coulomb basal conditions

    No full text
    • …
    corecore