99 research outputs found

    Evaluation of chemiluminescence, toluidine blue and histopathology for detection of high risk oral precancerous lesions: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early detection holds the key to an effective control of cancers in general and of oral cancers in particular. However, screening procedures for oral cancer are not straightforward due to procedural requirements as well as feasibility issues, especially in resource-limited countries.</p> <p>Methods</p> <p>We conducted a cross-sectional study to compare the performance of chemiluminescence, toluidine blue and histopathology for detection of high-risk precancerous oral lesions. We evaluated 99 lesions from 55 patients who underwent chemiluminescence and toluidine blue tests along with biopsy and histopathological examination. We studied inter-as well as intra-rater agreement in the histopathological evaluation and then using latent class modeling, we estimated the operating characteristics of these tests in the absence of a reference standard test.</p> <p>Results</p> <p>There was a weak inter-rater agreement (kappa < 0.15) as well as a weak intra-rater reproducibility (Pearson's r = 0.28, intra-class correlation rho = 0.03) in the histopathological evaluation of potentially high-risk precancerous lesions. When compared to histopathology, chemiluminescence and toluidine blue retention had a sensitivity of 1.00 and 0.59, respectively and a specificity of 0.01 and 0.79, respectively. However, latent class analysis indicated a low sensitivity (0.37) and high specificity (0.90) of histopathological evaluation. Toluidine blue had a near perfect high sensitivity and specificity for detection of high-risk lesions.</p> <p>Conclusion</p> <p>In our study, there was variability in the histopathological evaluation of oral precancerous lesions. Our results indicate that toluidine blue retention test may be better suited than chemiluminescence to detect high-risk oral precancerous lesions in a high-prevalence and low-resource setting like India.</p

    Cusp-core transformations in dwarf galaxies: observational predictions

    Full text link
    The presence of a dark matter core in the central kiloparsec of many dwarf galaxies has been a long standing problem in galaxy formation theories based on the standard cold dark matter paradigm. Recent cosmological simulations, based on Smooth Particle Hydrodynamics and rather strong feedback recipes have shown that it was indeed possible to form extended dark matter cores using baryonic processes related to a more realistic treatment of the interstellar medium. Using adaptive mesh refinement, together with a new, stronger supernovae feedback scheme that we have recently implemented in the RAMSES code, we show that it is also possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 10 billion solar masses dark matter halo. Although our numerical experiment is idealized, it allows a clean and unambiguous identification of the dark matter core formation process. Our dark matter inner profile is well fitted by a pseudo-isothermal profile with a core radius of 800 pc. The core formation mechanism is consistent with the one proposed recently by Pontzen & Governato. We highlight two key observational predictions of all simulations that find cusp-core transformations: (i) a bursty star formation history with peak to trough ratio of 5 to 10 and a duty cycle comparable to the local dynamical time; and (ii) a stellar distribution that is hot with v/sigma=1. We compare the observational properties of our model galaxy with recent measurements of the isolated dwarf WLM. We show that the spatial and kinematical distribution of stars and HI gas are in striking agreement with observations, supporting the fundamental role played by stellar feedback in shaping both the stellar and dark matter distribution.Comment: Accepted for publication in MNRA

    Mucosal Healing in Ulcerative Colitis: A Comprehensive Review

    Get PDF
    Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by periods of remission and periods of relapse. Patients often present with symptoms such as rectal bleeding, diarrhea and weight loss, and may require hospitalization and even colectomy. Long-term complications of UC include decreased quality of life and productivity and an increased risk of colorectal cancer. Mucosal healing (MH) has gained progressive importance in the management of UC patients. In this article, we review the endoscopic findings that define both mucosal injury and MH, and the strengths and limitations of the scoring systems currently available in clinical practice. The basic mechanisms behind colonic injury and MH are covered, highlighting the pathways through which different drugs exert their effect towards reducing inflammation and promoting epithelial repair. A comprehensive review of the evidence for approved drugs for UC to achieve and maintain MH is provided, including a section on the pharmacokinetics of anti-tumor necrosis factor (TNF)-alpha drugs. Currently approved drugs with proven efficacy in achieving MH in UC include salicylates, corticosteroids (induction only), calcineurin inhibitors (induction only), thiopurines, vedolizumab and anti-TNF alpha drugs (infliximab, adalimumab, and golimumab). MH is of crucial relevance in the outcomes of UC, resulting in lower incidences of clinical relapse, the need for hospitalization and surgery, as well as reduced rates of dysplasia and colorectal cancer. Finally, we present recent evidence towards the need for a more strict definition of complete MH as the preferred endpoint for UC patients, using a combination of both endoscopic and histological findings.info:eu-repo/semantics/publishedVersio

    A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    Get PDF

    Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions

    Get PDF
    Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genomeencoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10−4 –5.6 × 10−3 ) and in 30 regions 5604 | Human Molecular Genetics, 2015, Vol. 24, No. 19 we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10−6 ) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation
    corecore