13 research outputs found
Exploring data provenance in handwritten text recognition infrastructure:Sharing and reusing ground truth data, referencing models, and acknowledging contributions. Starting the conversation on how we could get it done
This paper discusses best practices for sharing and reusing Ground Truth in Handwritten Text Recognition infrastructures, and ways to reference and acknowledge contributions to the creation and enrichment of data within these Machine Learning systems. We discuss how one can publish Ground Truth data in a repository and, subsequently, inform others. Furthermore, we suggest appropriate citation methods for HTR data, models, and contributions made by volunteers. Moreover, when using digitised sources (digital facsimiles), it becomes increasingly important to distinguish between the physical object and the digital collection. These topics all relate to the proper acknowledgement of labour put into digitising, transcribing, and sharing Ground Truth HTR data. This also points to broader issues surrounding the use of Machine Learning in archival and library contexts, and how the community should begin toacknowledge and record both contributions and data provenance
Exploring Data Provenance in Handwritten Text Recognition Infrastructure: Sharing and Reusing Ground Truth Data, Referencing Models, and Acknowledging Contributions. Starting the Conversation on How We Could Get It Done
This paper discusses best practices for sharing and reusing Ground Truth in Handwritten Text Recognition infrastructures, as well as ways to reference and acknowledge contributions to the creation and enrichment of data within these systems. We discuss how one can place Ground Truth data in a repository and, subsequently, inform others through HTR-United. Furthermore, we want to suggest appropriate citation methods for ATR data, models, and contributions made by volunteers. Moreover, when using digitised sources (digital facsimiles), it becomes increasingly important to distinguish between the physical object and the digital collection. These topics all relate to the proper acknowledgement of labour put into digitising, transcribing, and sharing Ground Truth HTR data. This also points to broader issues surrounding the use of machine learning in archival and library contexts, and how the community should begin to acknowledge and record both contributions and data provenance
Therapy and Outcome of Staphylococcus aureus Infections of Intracorporeal Ventricular Assist Devices
Infection of the driveline or pump pocket is a common complication in patients with ventricular assist devices (VADs) and Staphylococcus aureus is the main pathogen causing such infections. Limited evidence is currently available to guide the choice of antibiotic therapy and the duration of treatment in these patients. Patients at the University Medical Center Utrecht who developed a VAD-related S. aureus infection between 2007 and 2016 were retrospectively assessed. Blood culture isolates were typed by whole genome sequencing to differentiate between relapses and reinfections, and to determine whether antibiotic therapy had led to acquisition of resistance mutations. Twenty-eight patients had S. aureus VAD infections. Ten of these patients also suffered S. aureus bacteremia. Discontinuation of antibiotic therapy was followed by relapse in 50% of the patients without prior S. aureus bacteremia and in 80% of patients with bacteremia. Oral cephalexin could ultimately suppress the infection for the duration of follow-up in 8/8 patients without S. aureus bacteremia and in 3/6 patients with S. aureus bacteremia. Clindamycin failed as suppressive therapy in 4/4 patients. Cephalexin appears an adequate choice for antibiotic suppression of VAD infections with methicillin-susceptible S. aureus. In patients without systemic symptoms, it may be justified to attempt to stop therapy after treatment of the acute infection, but antibiotic suppression until heart transplant seems indicated in patients with S. aureus bacteremia
Th1-Directing Adjuvants Increase the Immunogenicity of Oligosaccharide-Protein Conjugate Vaccines Related to Streptococcus pneumoniae Type 3
Oligosaccharide (OS)-protein conjugates are promising candidate vaccinesagainst encapsulated bacteria, such as Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae. Although the effects of several variables such as OS chain length and protein carrier have been studied, little is known about the influence of adjuvants on the immunogenicity of OS-protein conjugates. In this study, a minimal protective trisaccharide epitope of Streptococcus pneumoniae type 3 conjugated to the cross-reacting material of diphtheria toxin was used for immunization of BALB/c mice in the presence of different adjuvants. Subsequently, half of the mice received a booster immunization with conjugate alone. Independent of the use and type of adjuvant, all mice produced long-lasting anti-polysaccharide type 3 (PS3) antibody levels, which provided full protection against challenge with pneumococcal type 3 bacteria. All adjuvants tested increased the anti-PS3 antibody levels and opsonic capacities as measured by an enzyme-linked immunosorbent assay and an in vitro phagocytosis assay. The use of QuilA or a combination of the adjuvants CpG and dimethyl dioctadecyl ammonium bromide resulted in the highest phagocytic capacities and the highest levels of Th1-related immunoglobulin G (IgG) subclasses. Phagocytic capacity correlated strongly with Th1-associated IgG2a and IgG2b levels, to a lesser extent with Th2-associated IgG1 levels, and weakly with thiocyanate elution as a measure of avidity. Thus, the improved immunogenicity of OS-protein conjugates was most pronounced for Th1-directing adjuvants
Taxonomic position, antibiotic resistance and virulence factor production by Stenotrophomonas isolates from patients with cystic fibrosis and other chronic respiratory infections
BACKGROUND: The potential pathogenic role of Stenotrophomonas maltophilia in lung disease and in particular in cystic fibrosis is unclear. To develop further understanding of the biology of this taxa, the taxonomic position, antibiotic resistance and virulence factors of S. maltophilia isolates from patients with chronic lung disease were studied. RESULTS: A total of 111 isolates recovered between 2003 and 2016 from respiratory samples from patients in five different countries were included. Based on a cut-off of 95%, analysis of average nucleotide identity by BLAST (ANIb) showed that the 111 isolates identified as S. maltophilia by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) belonged to S. maltophilia (n = 65), S. pavanii (n = 6) and 13 putative novel species (n = 40), which each included 1–5 isolates; these groupings coincided with the results of the 16S rDNA analysis, and the L1 and L2 ß-lactamase Neighbor-Joining phylogeny. Chromosomally encoded aminoglycoside resistance was identified in all S. maltophilia and S. pavani isolates, while acquired antibiotic resistance genes were present in only a few isolates. Nevertheless, phenotypic resistance levels against commonly used antibiotics, determined by standard broth microbroth dilution, were high. Although putative virulence genes were present in all isolates, the percentage of positive isolates varied. The Xps II secretion system responsible for the secretion of the StmPr1–3 proteases was mainly limited to isolates identified as S. maltophilia based on ANIb, but no correlation with phenotypic expression of protease activity was found. The RPF two-component quorum sensing system involved in virulence and antibiotic resistance expression has two main variants with one variant lacking 190 amino acids in the sensing region. CONCLUSIONS: The putative novel Stenotrophomonas species recovered from patient samples and identified by MALDI-TOF/MS as S. maltophilia, differed from S. maltophilia in resistance and virulence genes, and therefore possibly in pathogenicity. Revision of the Stenotrophomonas taxonomy is needed in order to reliably identify strains within the genus and elucidate the role of the different species in disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-022-02466-5
Taxonomic position, antibiotic resistance and virulence factors of clinical Achromobacter isolates
The role of Achromobacterspecies in lung disease remains unclear. The aim of this study was to characterize Achromobacterisolated from persons with cystic fibrosis and from other clinical samples. Whole genome sequences from 101 Achromobacter isolates were determined (81 from patients with cystic fibrosis and 20 from other patients) and analysed. Taxonomic analysis showed nine species including two putative novel species. Thirty-five novel sequence types were present. The most active agent was co-trimoxazole followed by imipenem, but Minimal Inhibitory Concentrations (MICs) were high. Acquired antibiotic resistance genes were rare. Their presence did not correlate with minimal inhibitory concentrations suggesting that other mechanisms are involved. Genes for proposed virulence factors were present in only some isolates. Two putative novel species were identified. The putative virulence properties of Achromobacter involved in infections are variable. Despite the high MICs, acquired resistance genes are uncommon