27 research outputs found

    Novel Porous Polymorphs of Zinc Cyanide with Rich Thermal and Mechanical Behavior

    Full text link
    We investigate the feasibility of four-connected nets as hypothetical zinc cyanide polymorphs, as well as their thermal and mechanical properties, through quantum chemical calculations and molecular dynamics simulations. We confirm the metastability of the two porous phases recently discovered experimentally (Lapidus, S. H.; et al. J. Am. Chem. Soc. 2013, 135, 7621-7628), suggest the existence of seven novel porous phases of Zn(CN)2, and show that isotropic negative thermal expansion is a common occurrence among all members of this family of materials, with thermal expansion coefficients close to that of the dense dia-c phase. In constrast, we find a wide variety in the mechanical behavior of these porous structures with framework-dependent anisotropic compressibilities. All porous structures, however, show pressure-induced softening leading to a structural transition at modest pressure.Comment: Chem. Mater. 201

    Hidden Quasiparticles and Incoherent Photoemission Spectra in Na2IrO3

    Full text link
    We study two Heisenberg-Kitaev t-J-like models on a honeycomb lattice, focusing on the zigzag magnetic phase of Na2_2IrO3_3, and investigate hole motion by exact diagonalization and variational methods. The spectral functions are quite distinct from those of cuprates and are dominated by large incoherent spectral weight at high energy, almost independent of the microscopic parameters --- a universal and generic feature for zigzag magnetic correlations. We explain why quasiparticles at low energy are strongly suppressed in the photoemission spectra and determine an analog of a pseudogap. We point out that the qualitative features of the predominantly incoherent spectra obtained within the two different models for the zigzag phase are similar, and they have remarkable similarity to recently reported angular resolved photoemission spectra for Na2_2IrO3_3.Comment: 5 pages, 5 figures, and appendi

    Effects of spin vacancies on magnetic properties of the Kitaev-Heisenberg model

    Full text link
    We study the ground state properties of the Kitaev-Heisenberg model in a magnetic field and explore the evolution of spin correlations in the presence of non-magnetic vacancies. By means of exact diagonalizations, the phase diagram without vacancies is determined as a function of the magnetic field and the ratio between Kitaev and Heisenberg interactions. We show that in the (antiferromagnetic) stripe ordered phase the static susceptibility and its anisotropy can be described by a spin canting mechanism. This accounts as well for the transition to the polarized phase when including quantum fluctuations perturbatively. Effects of spin vacancies depend sensitively on the type of the ground state. In the liquid phase, the magnetization pattern around a single vacancy in a small field is determined, and its spatial anisotropy is related to that of non-zero further neighbor correlations induced by the field and/or Heisenberg interactions. In the stripe phase, the joint effect of a vacancy and a small field breaks the six-fold symmetry of the model and stabilizes a particular stripe pattern. Similar symmetry-breaking effects occur even at zero field due to effective interactions between vacancies. This selection mechanism and intrinsic randomness of vacancy positions may lead to spin-glass behavior.Comment: 13 pages, 10 figure

    Doping quantum dimer models on the square lattice

    Full text link
    A family of models is proposed to describe the motion of holes in a fluctuating quantum dimer background on the square lattice. Following Castelnovo et al. [Ann. Phys. (NY) 318, 316 (2005)], a generalized Rokhsar-Kivelson Hamiltonian at **finite doping** which can be mapped on a **doped** interacting classical dimer model is constructed. A simple physical extension of this model is also considered. Using numerical computations and simple considerations based on the above exact mapping, we determine the phase diagram of the model showing a number of quantum phases typical of a doped Mott insulator. The two-hole correlation function generically exhibits short-range or long-range algebraic correlations in the solid (columnar) and liquid (critical) phases of the model, respectively. Evidence for an extended region of a doped VBS phase exhibiting holon pairing but **no** phase separation is given. In contrast, we show that hole deconfinement occurs in the staggered dimer phase.Comment: 5 page

    Valence Bond Crystal and possible orbital pinball liquid in a t2g model

    Full text link
    We study a model for orbitally degenerate Mott insulators, where localized electrons possess t_2g degrees of freedom coupled by several, competing, exchange mechanisms. We provide evidence for two distinct strongly fluctuating regimes, depending on whether superexchange or direct exchange mechanism predominates. In the superexchange-dominated regime, the ground state is dimerized, with nearest neighbor orbital singlets covering the lattice. By deriving an effective quantum dimer model and analyzing it numerically, we characterize this dimerized phase as a valence bond crystal stabilized by singlet resonances within a large unit cell. In the opposite regime, with predominant direct exchange, the combined analysis of the original model and another effective model adapted to the local constraints, shows that subleading perturbations select a highly resonating ground state, with coexisting diagonal and off-diagonal long-range orbital orders.Comment: 14 pages, 13 figure

    Magnetic properties of nanoscale compass-Heisenberg planar clusters

    Full text link
    We study a model of spins 1/2 on a square lattice, generalizing the quantum compass model via the addition of perturbing Heisenberg interactions between nearest neighbors, and investigate its phase diagram and magnetic excitations. This model has motivations both from the field of strongly correlated systems with orbital degeneracy and from that of solid-state based devices proposed for quantum computing. We find that the high degeneracy of ground states of the compass model is fragile and changes into twofold degenerate ground states for any finite amplitude of Heisenberg coupling. By computing the spin structure factors of finite clusters with Lanczos diagonalization, we evidence a rich variety of phases characterized by Z2 symmetry, that are either ferromagnetic, C-type antiferromagnetic, or of Neel type, and analyze the effects of quantum fluctuations on phase boundaries. In the ordered phases the anisotropy of compass interactions leads to a finite excitation gap to spin waves. We show that for small nanoscale clusters with large anisotropy gap the lowest excitations are column-flip excitations that emerge due to Heisenberg perturbations from the manifold of degenerate ground states of the compass model. We derive an effective one-dimensional XYZ model which faithfully reproduces the exact structure of these excited states and elucidates their microscopic origin. The low energy column-flip or compass-type excitations are robust against decoherence processes and are therefore well designed for storing information in quantum computing. We also point out that the dipolar interactions between nitrogen-vacancy centers forming a rectangular lattice in a diamond matrix may permit a solid-state realization of the anisotropic compass-Heisenberg model.Comment: 24 pages, 18 figure

    Computational Chemistry Methods for Nanoporous Materials

    Get PDF
    International audienceWe present here the computational chemistry methods our group uses to investigate the physical and chemical properties of nanoporous materials and adsorbed fluids. We highlight the multiple time and length scales at which these properties can be examined and discuss the computational tools relevant to each scale. Furthermore, we include the key points to consider—upsides, downsides, and possible pitfalls—for these methods
    corecore