156 research outputs found
Biological Monitoring of Hexavalent Chromium and Serum Levels of the Senescence Biomarker Apolipoprotein J/Clusterin in Welders
Welding fumes contain metals and other toxic substances known or strongly suspected to be related with oxidative stress and premature cellular senescence. Apolipoprotein J/Clusterin (ApoJ/CLU) is a glycoprotein that is differentially regulated in various physiological and disease states including ageing and age-related diseases. In vitro data showed that exposure of human diploid fibroblasts to hexavalent chromium (Cr(VI)) resulted in premature senescence and significant upregulation of the ApoJ/CLU protein. In this study we analyzed blood and urine samples from shipyard industry welders being exposed to different levels of Cr(VI) over a period of five months in order to assay in vivo the relation of ApoJ/CLU serum levels with Cr(VI). Our findings confirmed the previously reported in vitro data since reduction of Cr levels, after a worksite intervention, associated with lower levels of ApoJ/CLU serum levels. We concluded that the human ApoJ/CLU gene is responsive to the acute in vivo oxidative stress induced by heavy metals such as hexavalent chromium
Proteome Stability as a Key Factor of Genome Integrity
DNA damage is constantly produced by both endogenous and exogenous factors; DNA lesions then trigger the so-called DNA damaged response (DDR). This is a highly synchronized pathway that involves recognition, signaling and repair of the damage. Failure to eliminate DNA lesions is associated with genome instability, a driving force in tumorigenesis. Proteins carry out the vast majority of cellular functions and thus proteome quality control (PQC) is critical for the maintenance of cellular functionality. PQC is assured by the proteostasis network (PN), which under conditions of proteome instability address the triage decision of protein fold, hold, or degrade. Key components of the PN are the protein synthesis modules, the molecular chaperones and the two main degradation machineries, namely the autophagy-lysosome and the ubiquitin-proteasome pathways; also, part of the PN are a number of stress-responsive cellular sensors including (among others) heat shock factor 1 (Hsf1) and the nuclear factor erythroid 2-related factor 2 (Nrf2). Nevertheless, the lifestyle- and/or ageing-associated gradual accumulation of stressors results in increasingly damaged and unstable proteome due to accumulation of misfolded proteins and/or protein aggregates. This outcome may then increase genomic instability due to reduced fidelity in processes like DNA replication or repair leading to various age-related diseases including cancer. Herein, we review the role of proteostatic machineries in nuclear genome integrity and stability, as well as on DDR responses
Apolipoprotein J/Clusterin in Human Erythrocytes Is Involved in the Molecular Process of Defected Material Disposal during Vesiculation
BACKGROUND: We have showed that secretory Apolipoprotein J/Clusterin (sCLU) is down-regulated in senescent, stressed or diseased red blood cells (RBCs). It was hypothesized that sCLU loss relates to RBCs vesiculation, a mechanism that removes erythrocyte membrane patches containing defective or potentially harmful components. METHODOLOGY/PRINCIPAL FINDINGS: To investigate this issue we employed a combination of biochemical and microscopical approaches in freshly prepared RBCs or RBCs stored under standard blood bank conditions, an in vitro model system of cellular aging. We found that sCLU is effectively exocytosed in vivo during membrane vesiculation of freshly prepared RBCs. In support, the RBCs' sCLU content was progressively reduced during RBCs ex vivo maturation and senescence under cold storage due to its selective exocytosis in membrane vesicles. A range of typical vesicular components, also involved in RBCs senescence, like Band 3, CD59, hemoglobin and carbonylated membrane proteins were found to physically interact with sCLU. CONCLUSIONS/SIGNIFICANCE: The maturation of RBCs is associated with a progressive loss of sCLU. We propose that sCLU is functionally involved in the disposal of oxidized/defected material through RBCs vesiculation. This process most probably takes place through sCLU interaction with RBCs membrane proteins that are implicit vesicular components. Therefore, sCLU represents a pro-survival factor acting for the postponement of the untimely clearance of RBCs
Prothymosin a and a prothymosin α-derived peptide enhance TH1-type immune responses against defined HER-2/neu epitopes
Background:
Active cancer immunotherapies are beginning to yield clinical benefit, especially those using peptide-pulsed dendritic cells (DCs). Different adjuvants, including Toll-like receptor (TLR) agonists, commonly co-administered to cancer patients as part of a DC-based vaccine, are being widely tested in the clinical setting. However, endogenous DCs in tumor-bearing individuals are often dysfunctional, suggesting that ex vivo educated DCs might be superior inducers of anti-tumor immune responses. We have previously shown that prothymosin alpha (proTα) and its immunoreactive decapeptide proTα(100–109) induce the maturation of human DCs in vitro. The aim of this study was to investigate whether proTα- or proTα(100–109)-matured DCs are functionally competent and to provide preliminary evidence for the mode of action of these agents.
Results:
Monocyte-derived DCs matured in vitro with proTα or proTα(100–109) express co-stimulatory molecules and secrete pro-inflammatory cytokines. ProTα- and proTα(100–109)-matured DCs pulsed with HER-2/neu peptides induce TH1-type immune responses, prime autologous naïve CD8-positive (+) T cells to lyse targets expressing the HER-2/neu epitopes and to express a polyfunctional profile, and stimulate CD4+ T cell proliferation in an HER-2/neu peptide-dependent manner. DC maturation induced by proTα and proTα(100–109) is likely mediated via TLR-4, as
25 shown by assessing TLR-4 surface expression and the levels of the intracellular adaptor molecules TIRAP, MyD88 and TRIF.
Conclusions:
Our results suggest that proTα and proTα(100–109) induce both the maturation and the T cell stimulatory capacity of DCs. Although further studies are needed, evidence for a possible proTα and proTα(100–109) interaction with TLR-4 is provided. The initial hypothesis that proTα and the proTα-derived immunoactive decapeptide act as “alarmins”, provides a rationale for their eventual use as adjuvants in DC-based anti-cancer immunotherapy
NFE2-Related transcription factor 2 coordinates antioxidant defense with thyroglobulin production and iodination in the thyroid gland
Background: The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Methods: Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. Results: The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Conclusions: Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.Fil: Ziros, Panos G. Lausanne University; SuizaFil: Habeos, Ioannis. Patras University; GreciaFil: Chartoumpekis, Dionysios V. University of Pittsburgh; Estados UnidosFil: Ntalampyra, Eleni. Universite de Lausanne; SuizaFil: Somm, Emmanuel. Universite de Lausanne; SuizaFil: Renaud, Cédric O.. Universite de Lausanne; SuizaFil: Bongiovanni, Massimo. Institute Of Pathology Locarno; SuizaFil: Trougakos, Ioannis P. Universidad Nacional y Kapodistríaca de Atenas; GreciaFil: Yamamoto, Masayuki. University Of Tohoku; JapónFil: Kensler, Thomas W.. University of Pittsburgh at Johnstown; Estados UnidosFil: Santisteban, Pilar. Universidad Autónoma de Madrid; EspañaFil: Carrasco, Nancy. University of Yale. School of Medicine; Estados UnidosFil: Ris Stalpers, Carrie. Academic Medical Center; Países BajosFil: Amendola, Elena. Universidad de Nápoles; ItaliaFil: Liao, Xiao-Hui. University of Chicago; Estados UnidosFil: Rossich, Luciano Esteban. Comisión Nacional de Energía Atómica de Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Thomasz, Lisa. Comisión Nacional de Energía Atómica de Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Juvenal, Guillermo Juan. Comisión Nacional de Energía Atómica de Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Refetoff, Samuel. University of Chicago; Estados UnidosFil: Sykiotis, Gerasimos P.. Universite de Lausanne; Suiz
Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy
The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not well understood. We show here that knock down (KD) of proteasome subunits in Drosophila flies, induced, for most subunits, developmental lethality. Ubiquitous or tissue specific proteasome dysfunction triggered systemic proteome instability and activation of PN modules, including macroautophagy/autophagy, molecular chaperones and the antioxidant cncC (the fly ortholog of NFE2L2/Nrf2) pathway. Also, proteasome KD increased genomic instability, altered metabolic pathways and severely disrupted mitochondrial functionality, triggering a cncC-dependent upregulation of mitostatic genes and enhanced rates of mitophagy. Whereas, overexpression of key regulators of antioxidant responses (e.g., cncC or foxo) could not suppress the deleterious effects of proteasome dysfunction; these were alleviated in both larvae and adult flies by modulating mitochondrial dynamics towards increased fusion or by enhancing autophagy. Our findings reveal the extensive functional wiring of genomic, proteostatic and mitostatic modules in higher metazoans. Also, they support the notion that age-related increase of proteotoxic stress due to decreased UPP activity deregulates all aspects of cellular functionality being thus a driving force for most age-related diseases. Abbreviations: ALP: autophagy-lysosome pathway; ARE: antioxidant response element; Atg8a: autophagy-related 8a; ATPsynβ: ATP synthase, β subunit; C-L: caspase-like proteasomal activity; cncC: cap-n-collar isoform-C; CT-L: chymotrypsin-like proteasomal activity; Drp1: dynamin related protein 1; ER: endoplasmic reticulum; foxo: forkhead box, sub-group O; GLU: glucose; GFP: green fluorescent protein; GLY: glycogen; Hsf: heat shock factor; Hsp: Heat shock protein; Keap1: kelch-like ECH-associated protein 1; Marf: mitochondrial assembly regulatory factor; NFE2L2/Nrf2: nuclear factor, erythroid 2 like 2; Opa1: optic atrophy 1; PN: proteostasis network; RNAi: RNA interference; ROS: reactive oxygen species; ref(2)P: refractory to sigma P; SQSTM1: sequestosome 1; SdhA: succinate dehydrogenase, subunit A; T-L: trypsin-like proteasomal activity; TREH: trehalose; UAS: upstream activation sequence; Ub: ubiquitin; UPR: unfolded protein response; UPP: ubiquitin-proteasome pathway.</p
The Transcriptomic Response of the Murine Thyroid Gland to Iodide Overload and the Role of the Nrf2 Antioxidant System
Background: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. Methods: C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05% sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Results: Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis- and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory–autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves’ disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Conclusions: Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves’ disease) and PTC
Impact of minimal residual disease detection by next-generation flow cytometry in multiple myeloma patients with sustained complete remission after frontline therapy
Minimal residual disease (MRD) was monitored in 52 patients with sustained CR (≥2 years) after frontline therapy using next-generation flow (NGF) cytometry. 25% of patients initially MRD- reversed to MRD+. 56% of patients in sustained CR were MRD+; 45% at the level of 10−5; 17% at 10−6. All patients who relapsed during follow-up were MRD+ at the latest MRD assessment, including those with ultra-low tumor burden. MRD persistence was associated with specific phenotypic profiles: higher erythroblasts’ and tumor-associated monocytes/macrophages’ predominance in the bone marrow niche. NGF emerges as a suitable method for periodic, reproducible, highly-sensitive MRD-detection at the level of 10−6
Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins
The Cdc6 replication licensing factor acts as a molecular switch at the E-cadherin locus, leading to E-cadherin transcriptional repression and local activation of replication
Ресурсоэффективные системы в управлении и контроле: взгляд в будущее (т. 2): сборник научных трудов VII Международной конференции школьников, студентов, аспирантов, молодых ученых, 8 -13 октября 2018 г., г. Томск
В сборнике представлены материалы VII Международной конференции школьников, студентов, аспирантов, молодых ученых "Ресурсоэффективные системы в управлении и контроле: взгляд в будущее". Более 500 авторов из 35 вузов, предприятий и научных исследовательских университетов России, ближнего и дальнего зарубежья представили тезисы своих докладов, в которых рассматриваются актуальные проблемы неразрушающего контроля и технической диагностики, внедрения систем менеджмента, качества образования, управления в современной экономике. Материалы предназначены для специалистов, преподавателей, аспирантов и студентов вузов, а также для всех интересующихся проблемами ресурсоэффективных технологий
- …