838 research outputs found

    FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mouse definitive neural stem cells (NSCs) are derived from a population of LIF-responsive primitive neural stem cells (pNSCs) within the neurectoderm, yet details on the early signaling and transcriptional mechanisms that control this lineage transition are lacking. Here we tested whether FGF and Wnt signaling pathways can regulate <it>Zfhx1b </it>expression to control early neural stem cell development.</p> <p>Results</p> <p>By microinjecting FGF8b into the pro-amniotic cavity <it>ex vivo </it>at 7.0 days post-coitum (dpc) and culturing whole embryos, we demonstrate that neurectoderm-specific gene expression (for example, <it>Sox2</it>, <it>Nestin</it>, <it>Zfhx1b</it>) is increased, whereas Wnt3a represses neurectoderm gene expression. To determine whether FGF signaling also mediates the lineage transition from a pNSC to a NSC, 7.0-dpc embryos were microinjected with either FGF8b or inhibitors of the FGF receptor-MAP kinase signaling pathway <it>ex vivo</it>, cultured as whole embryos to approximately 8.5 dpc and assayed for clonal NSC colony formation. We show that pre-activation of FGF signaling in the anterior neurectoderm causes an increase in the number of colony forming NSCs derived later from the anterior neural plate, whereas inhibition of FGF signaling significantly reduces the number of NSC colonies. Interestingly, inhibition of FGF signaling causes the persistence of LIF-responsive pNSCs within the anterior neural plate and over-expression of <it>Zfhx1b </it>in these cells is sufficient to rescue the transition from a LIF-responsive pNSC to an FGF-responsive NSC.</p> <p>Conclusion</p> <p>Our data suggest that definitive NSC fate specification in the mouse neurectoderm is facilitated by FGF activation of <it>Zfhx1b</it>.</p

    Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development

    Get PDF
    Abstract Background The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome. Results Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype. Conclusion Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis

    Exercise Increases Neural Stem Cell Number in a GH-Dependent Manner, Augmenting the Regenerative Response in Aged Mice

    Get PDF
    The exercise-induced enhancement of learning and memory, and its ability to slow age-related cognitive decline in humans led us to investigate whether running stimulates periventricular (PVR) neural stem cells (NSCs) in aging mice, thereby augmenting the regenerative capacity of the brain. To establish a benchmark of normal aging on endogenous NSCs, we harvested the PVR from serial vibratome sections through the lateral ventricles of juvenile (6-8 weeks), 6, 12, 18, and 24-month-old mice, culturing the cells in the neural colony forming cell assay. A significant decline in NSC frequency was apparent by 6-months (~40%) ultimately resulting in a ~90% reduction by 24-months. Concurrent with this decline was a progressive loss in regenerative capacity, as reflected by an incomplete repopulation of neurosphere-forming cells following gamma cell irradiation-induced depletion of the PVR. However voluntary exercise (i.e. 21 days of running) significantly increased NSC frequency in mic

    Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1

    Get PDF
    AbstractExpression of the transcription factor zic1 at the onset of gastrulation is one of the earliest molecular indicators of neural fate determination in Xenopus. Inhibition of bone morphogenetic protein (BMP) signaling is critical for activation of zic1 expression and fundamental for establishing neural identity in both vertebrates and invertebrates. The mechanism by which interruption of BMP signaling activates neural-specific gene expression is not understood. Here, we report identification of a 215 bp genomic module that is both necessary and sufficient to activate Xenopus zic1 transcription upon interruption of BMP signaling. Transgenic analyses demonstrate that this BMP inhibitory response module (BIRM) is required for expression in the whole embryo. Multiple consensus binding sites for specific transcription factor families within the BIRM are required for its activity and some of these regions are phylogenetically conserved between orthologous vertebrate zic1 genes. These data suggest that interruption of BMP signaling facilitates neural determination via a complex mechanism, involving multiple regulatory factors that cooperate to control zic1 expression

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Comparative Analysis of the Frequency and Distribution of Stem and Progenitor Cells in the Adult Mouse Brain

    Get PDF
    cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 m coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphereforming cells detected in individual 400 m sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 276) or colonies (4275 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU/Ki-67) or competent to divide (BrdU/Mcm-2), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques

    Low Oxygen Enhances Primitive and Definitive Neural Stem Cell Colony Formation by Inhibiting Distinct Cell Death Pathways

    Get PDF
    Neural stem cells (NSCs) can be derived from single mouse embryonic stem cells (ESCs) in the absence of instructive factors. Clonal primitive NSC (pNSC) colonies are formed first, and then give rise to clonal, fibroblast growth factor-dependent definitive neural stem cells (dNSCs). We tested low-oxygen culture as a potential method of alleviating the extensive cell death seen in pNSCs and dNSCs. Culture in low (4%) oxygen promoted survival of pNSCs by inhibiting apoptosis-inducing factor (AIF)-dependent cell death, although pNSCs undergo both AIF- and caspase-mediated cell death in 20% oxygen. In contrast, survival of dNSCs in low oxygen was increased by inhibition of caspase-dependent cell death. In normoxia, AIF is implicated in promoting dNSC survival. Neither survival effect was dependent on the main transcriptional effector of hypoxia, hypoxia-inducible factor 1. Low-oxygen concentrations may be involved in expansion of early NSC populations by inhibiting cell death through different pathways in these sequential pNSC and dNSC populations. Stem Cells 2009;27:1879–188

    The Fetal Hypothalamus Has the Potential to Generate Cells with a Gonadotropin Releasing Hormone (GnRH) Phenotype

    Get PDF
    Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation
    corecore