495 research outputs found

    Changing eruptive styles and textural features from phreatomagmatic to strombolian activity of basaltic littoral cones: Los Erales cinder cone, Tenerife, Canary Islands

    Get PDF
    Montaña Los Erales is a 70 m high Quaternary cinder cone in the Bandas del Sur region, south Tenerife. Field observations on excavated sections and SEM analysis of tephra samples from the cone suggest that the eruption style of this vent changed progressively from an initial hydrovolcanic phase, through a transitional stage, to one that was entirely strombolian. Clast sizes increase from ≤1 cm angular lapilli in hydrovolcanic samples to 15 cm bombs in strombolian samples. Vesicles also increase in size from 0.5 mm to 1.2 mm, becoming more rounded in the strombolian samples. Palagonitization, extensive in the hydrovolcanic deposits, becomes less noticeable in strombolian deposits. To investigate the causes for and the nature of these changes in eruptive style, products from each major unit were analysed for their morphology, using scanning electron microscopy with both SE and BSE imaging as tephra morphologies are known to reflect the eruptive regime and degree of explosivity at the time of eruption. SEM imaging of hydrovolcanic samples illustrate angular fragments that have been rapidly quenched and contain high levels of palagonitisation and zeolitisation, whereas strombolian samples appear to be less altered and display larger clast sizes and vesicles. Our results confirm that the initial phase of activity was largely driven by magma-water (coolant) interaction, where magma may have interacted with a lens of fresh ground or surface water, causing intense fragmentation of the magma. With proceeding eruptive activity the water became exhausted, giving rise to an entirely strombolian eruptive style. Additionally, fossil diatoms were found in hydrovolcanic samples, further emphasising the influence of a, probably fluvial, water source during the early phase of emplacement.La Montaña de Los Erales es un cono de cínder del Cuaternario de 70 m de altura situado en la zona de las Bandas del Sur, en el litoral meridional de la isla de Tenerife. Observaciones de campo en secciones excavadas en los flancos del cono y análisis SEM de las muestras de tefra sugieren que el estilo eruptivo de este aparato volcánico cambió progresivamente durante la erupción de una fase inicial hidrovolcánica a una final enteramente estromboliana, con estadios intermedios transicionales. El tamaño de los clastos aumenta de ≤1 cm de lapilli angular en las muestras hidrovolcánicas a bombas de 15 cm en las estrombolianas. Las vesículas también aumentan en tamaño desde 0,5 mm a 1,2 mm, volviéndose más redondeadas en las muestras estrombolianas. Los intensos procesos de palagonitización de los depósitos hidrovolcánicos son menos significativos en las fases estrombolianas. Con objeto de investigar la naturaleza y las causas de estos cambios se analizó la morfología de los productos de las principales fases. Se han utilizado para ello imágenes de microscopía electrónica (SE y BSE), ya que se sabe que las diferentes morfologías de estos piroclastos reflejan el régimen eruptivo y el grado de explosividad durante la erupción. Las imágenes SEM de las muestras hidrovolcánicas presentan fragmentos angulares que se han enfriado rápidamente y con elevado grado de palagonitización y zeolitización. Las estrombolianas, en cambio, aparecen menos alteradas y muestran mayor tamaño de clastos y vesículas. Los resultados obtenidos indican que la fase inicial de la erupción se caracteriza por una importante interacción magma-agua (refrigerante), probablemente relacionada con una cantidad limitada de agua superficial o freática que produjo la intensa fragmentación del magma. En el transcurso de la erupción la fuente de agua se agotó, dando lugar a las fases finales de carácter enteramente estromboliano. Fósiles de diatomeas, que se han encontrado asociados a las muestras hidrovolcánicas, refuerzan la posibilidad de que el agua fuera de origen superficial, probablemente el cauce de un barranco

    Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption

    Get PDF
    Lava domes are subjected to structural weakening that can lead to gravitational collapse and produce pyroclastic flows that may travel up to several kilometers from a volcano's summit. At Merapi volcano, Indonesia, pyroclastic flows are a major hazard, frequently causing high numbers of casualties. After the Volcanic Explosivity Index 4 eruption in 2010, a new lava dome developed on Merapi volcano and was structurally destabilized by six steam-driven explosions between 2012 and 2014. Previous studies revealed that the explosions produced elongated open fissures and a delineated block in the southern dome sector. Here, we investigated the geomorphology, structures, thermal fingerprint, alteration mapping and hazard potential of the Merapi lava dome by using drone-based geomorphologic data and forward-looking thermal infrared images. The block on the southern dome of Merapi is delineated by a horseshoe-shaped structure with a maximum depth of 8&thinsp;m and it is located on the unbuttressed southern steep flank. We identify intense thermal, fumarole and hydrothermal alteration activities along this horseshoe-shaped structure. We conjecture that hydrothermal alteration may weaken the horseshoe-shaped structure, which then may develop into a failure plane that can lead to gravitational collapse. To test this instability hypothesis, we calculated the factor of safety and ran a numerical model of block-and-ash flow using Titan2D. Results of the factor of safety analysis confirm that intense rainfall events may reduce the internal friction and thus gradually destabilize the dome. The titan2D model suggests that a hypothetical gravitational collapse of the delineated unstable dome sector may travel southward for up to 4&thinsp;km. This study highlights the relevance of gradual structural weakening of lava domes, which can influence the development fumaroles and hydrothermal alteration activities of cooling lava domes for years after initial emplacement.</p

    Magma–Carbonate Interaction Processes and Associated CO2 Release at Merapi Volcano, Indonesia: Insights from Experimental Petrology

    Get PDF
    There is considerable evidence for ongoing, late-stage interaction between the magmatic system at Merapi volcano, Indonesia, and local crustal carbonate (limestone). Calc-silicate xenoliths within Merapi basaltic-andesite eruptives display textures indicative of intense interaction between magma and crustal carbonate, and Merapi feldspar phenocrysts frequently contain individual crustally contaminated cores and zones. In order to resolve the interaction processes between magma and limestone in detail we have performed a series of time-variable de-carbonation experiments in silicate melt, at magmatic pressure and temperature, using a Merapi basaltic-andesite and local Javanese limestone as starting materials. We have used in-situ analytical methods to determine the elemental and strontium isotope composition of the experimental products and to trace the textural, chemical, and isotopic evolution of carbonate assimilation. The major processes of magmacarbonate interaction identified are: i) rapid decomposition and degassing of carbonate, ii) generation of a Ca-enriched, highly radiogenic strontium contaminant melt, distinct from the starting material composition, iii) intense CO2 vesiculation, particularly within the contaminated zones, iv) physical mingling between the contaminated and unaffected melt domains, and v) chemical mixing between melts. The experiments reproduce many of the features of magmacarbonate interaction observed in the natural Merapi xenoliths and feldspar phenocrysts. The Carich, high 87Sr/86Sr contaminant melt produced in the experiments is considered as a pre-cursor to the Ca-rich (often “hyper-calcic”) phases found in the xenoliths and the contaminated zones in Merapi feldspars. The xenoliths also exhibit micro-vesicular textures which can be linked to the CO2 liberation process seen in the experiments. This study, therefore, provides well-constrained petrological insights into the problem of crustal interaction at Merapi and points toward the substantial impact of such interaction on the volatile budget of the volcano

    Magma Ascent along a Major Terrane Boundary: Crustal Contamination and Magma Mixing at the Drumadoon Intrusive Complex, Isle of Arran, Scotland

    Get PDF
    The composite intrusions of Drumadoon and An Cumhann crop out on the SE coast of the Isle of Arran, Scotland and form part of the larger British and Irish Palaeogene Igneous Province, a subset of the North Atlantic Igneous Province. The intrusions (shallow-level dykes and sills) comprise a central quartz-feldspar-phyric rhyolite flanked by xenocryst-bearing basaltic andesite, with an intermediate zone of dark quartz-feldspar-phyric dacite. New geochemical data provide information on the evolution of the component magmas and their relationships with each other, as well as their interaction with the crust through which they travelled. During shallow-crustal emplacement, the end-member magmas mixed. Isotopic evidence shows that both magmas were contaminated by the crust prior to mixing; the basaltic andesite magma preserves some evidence of contamination within the lower crust, whereas the rhyolite mainly records upper-crustal contamination. The Highland Boundary Fault divides Arran into two distinct terranes, the Neoproterozoic to Early Palaeozoic Grampian Terrane to the north and the Palaeozoic Midland Valley Terrane to the south. The Drumadoon Complex lies within the Midland Valley Terrane but its isotopic signatures indicate almost exclusive involvement of Grampian Terrane crust. Therefore, although the magmas originated at depth on the northern side of the Highland Boundary Fault, they have crossed this boundary during their evolution, probably just prior to emplacemen

    CO2 bubble generation and migration during magma-carbonate interaction

    Get PDF
    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to beliberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions

    CO2 bubble generation and migration during magma–carbonate interaction

    Get PDF
    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200&nbsp;°C, 0.5&nbsp;GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2&nbsp;wt% H2O), and (3) a hydrous shoshonite (2&nbsp;wt% H2O). The duration of the experiments was varied from 0 to 300&nbsp;s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions
    • …
    corecore