8 research outputs found
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Application of x-ray imaging to current profile measurements in the PEGASUS experiment
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Diagnostic suite used for magnetohydrodynamics equilibrium reconstruction on the PEGASUS toroidal experiment (abstract)
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Beam emission spectroscopy diagnostic on the DIII-D tokamak
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Enhancement of edge turbulence concomitant with ELM suppression during boron powder injection in EAST
Data supporting the manuscript "Enhancement of edge turbulence concomitant with ELM suppression during boron powder injection in EAST" published in Plasma of Physics, 2021.The dataset includes the data shown in the figures of the accepted paper [Z. Sun et al, 2021, Plasma of Physics]
Type-I ELM mitigation by continuous lithium granule gravitational injection into the upper tungsten divertor in EAST
Large edge-localized modes (ELMs) were mitigated by gravitational injection of lithium granules into the upper X-point region of the EAST device with tungsten plasma-facing components. The maximum ELM size was reduced by ~ 70% in high βN H-mode plasmas. Large ELM stabilization was sustained for up to about 40 energy confinement times, with constant core radiated power and no evidence of high-Z or low-Z impurity accumulation. The lithium granules injection reduced the edge plasma pedestal density and temperature and their gradients, due to increased edge radiation and reduced recycling from the plasma-facing components. Ideal stability calculations using the ELITE code indicate that the stabilization of large ELMs correlates with improved stability of intermediate-n peeling-ballooning modes, due to reduced edge current resulting from the profile changes. The pedestal pressure reduction was partially offset by a core density increase, which resulted in a modest ~ 7% drop in core stored energy and normalized energy confinement time. We surmise that the remnant small ELMs are triggered by the penetration of multiple Li granules just past the separatrix, similar to small ELMs triggered by deuterium pellet [S. Futatani et al., Nucl. Fusion 54 (2014) 073008]. This study extends previous ELM elimination with Li powder injection [R. Maingi et al., Nucl. Fusion 58 (2018) 024003] in EAST because 1) use of small, dust-like powder and the related potential health hazards were eliminated, and 2) use of macroscopic granules should be more applicable to future devices, due to deeper penetration than dust particles, e.g. inside the separatrix with velocities ~ 10 m/s in EAST
Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment
Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. _________________________________________________