384 research outputs found
Class of dilute granular Couette flows with uniform heat flux
In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010)]
we presented a preliminary description of a special class of steady Couette
flows in dilute granular gases. In all flows of this class the viscous heating
is exactly balanced by inelastic cooling. This yields a uniform heat flux and a
linear relationship between the local temperature and flow velocity. The class
(referred to as the LTu class) includes the Fourier flow of ordinary gases and
the simple shear flow of granular gases as special cases. In the present paper
we provide further support for this class of Couette flows by following four
different routes, two of them being theoretical (Grad's moment method of the
Boltzmann equation and exact solution of a kinetic model) and the other two
being computational (molecular dynamics and Monte Carlo simulations of the
Boltzmann equation). Comparison between theory and simulations shows a very
good agreement for the non-Newtonian rheological properties, even for quite
strong inelasticity, and a good agreement for the heat flux coefficients in the
case of Grad's method, the agreement being only qualitative in the case of the
kinetic model.Comment: 15 pages, 10 figures; v2: change of title plus some other minor
change
Effects of non-denumerable fixed points in finite dynamical systems
The motion of a spinning football brings forth the possible existence of a
whole class of finite dynamical systems where there may be non-denumerably
infinite number of fixed points. They defy the very traditional meaning of the
fixed point that a point on the fixed point in the phase space should remain
there forever, for, a fixed point can evolve as well! Under such considerations
one can argue that a free-kicked football should be non-chaotic.Comment: This paper is a replaced version to modify the not-so-true claim,
made unknowingly in the earlier version, of being first to propose the
peculiar dynamical systems as described in the paper. With respect to the
original workers, we present here our original finding
Transition of free convection flow inside an inclined parallel walled channel: effects of inclination angle and width of the channel
Transition of free convection flow in an inclined parallel walled channel has been investigated numerically by employing k–ɛ turbulent model. Particular attention is paid on how the inclination angle and width of the channel affect the transition process of the flow developing in the channel. The upper plate of the channel is heated isothermally and facing downward, while the lower one is kept under the adiabatic condition. The inclination angle of the channel is varied from 0° to 85° with respect to its vertical position while the distance separating the two plates is systematically reduced from 0.45 to 0.06 m. Distributions of velocity, turbulent kinetic energy and local heat flux are presented to examine the critical distance and the results obtained show good agreement with experimental data available in the literature
The Role of Surface Vorticity during Unsteady Separation
Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics
Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids
We present results from numerical simulations of Rayleigh-Taylor turbulence,
performed using a recently proposed lattice Boltzmann method able to describe
consistently a thermal compressible flow subject to an external forcing. The
method allowed us to study the system both in the nearly-Boussinesq and
strongly compressible regimes. Moreover, we show that when the stratification
is important, the presence of the adiabatic gradient causes the arrest of the
mixing process.Comment: 15 pages, 11 figures. Proceedings of II Conference on Turbulent
Mixing and Beyond (TMB-2009
Rain, power laws, and advection
Localized rain events have been found to follow power-law size and duration
distributions over several decades, suggesting parallels between precipitation
and seismic activity [O. Peters et al., PRL 88, 018701 (2002)]. Similar power
laws are generated by treating rain as a passive tracer undergoing advection in
a velocity field generated by a two-dimensional system of point vortices.Comment: 7 pages, 4 figure
Simple Viscous Flows: from Boundary Layers to the Renormalization Group
The seemingly simple problem of determining the drag on a body moving through
a very viscous fluid has, for over 150 years, been a source of theoretical
confusion, mathematical paradoxes, and experimental artifacts, primarily
arising from the complex boundary layer structure of the flow near the body and
at infinity. We review the extensive experimental and theoretical literature on
this problem, with special emphasis on the logical relationship between
different approaches. The survey begins with the developments of matched
asymptotic expansions, and concludes with a discussion of perturbative
renormalization group techniques, adapted from quantum field theory to
differential equations. The renormalization group calculations lead to a new
prediction for the drag coefficient, one which can both reproduce and surpass
the results of matched asymptotics
Feeding Sows Lucerne, or Diets with Similar Energy and Nutritional Profiles to Lucerne, Improves the Pre-Weaning Performance of Piglets
Feeding fibre and branched-chain amino acids (BCAA) to sows during late gestation and lactation, respectively, have been shown to improve litter weights at weaning. Therefore, supplementing primiparous sow diets with lucerne chaff, a feedstuff high in fibre, BCAA and tryptophan, may improve the performance of their progeny. Experiment 1 investigated the effects of feeding primiparous sows (n = 118) either (i) a control diet (CON); (ii) CON with 1 kg of lucerne chaff (LUC); or (iii) a diet formulated to have a similar digestible energy and BCAA content as CON + LUC (SIMLUC 1) until farrowing. The LUC and SIMLUC 1 diets improved day 21 litter weight (p = 0.055). In Experiment 2 primiparous (n = 111) and multiparous sows (parities 2–5, n = 112) were fed either the CON or SIMLUC diet (SIMLUC 2) from day 110 of gestation to farrowing (PreF), or to day 10 post-farrowing (PreF + PostF). The SIMLUC 2 diet tended to be more beneficial to primiparous compared to multiparous sows when fed PreF, as indicated by an interaction between diet and parity on day 21 average piglet weights (p = 0.078). Overall, SIMLUC is most effective in improving primiparous progeny performance as evidenced by their D21 weights
Contemporary economic burden in a real-world heart failure population with Commercial and Medicare supplemental plans
Background Limited real-world data exist on healthcare resource utilization (HCRU) and associated costs of patients with heart failure (HF) with reduced ejection fraction (HFrEF) and preserved EF (HFpEF), including urgent HF visits, which are assumed to be less burdensome than HF hospitalizations (hHFs) Hypothesis This study aimed to quantify the economic burden of HFrEF and HFpEF, via a retrospective, longitudinal cohort study, using IBM(R) linked claims/electronic health records (Commercial and Medicare Supplemental data only). Methods Adult patients, indexed on HF diagnosis (ICD-10-CM: I50.x) from July 2012 through June 2018, with 6-month minimum baseline period and varying follow-up, were classified as HFrEF (I50.2x) or HFpEF (I50.3x) according to last-observed EF-specific diagnosis. HCRU/costs were assessed during follow-up. Results About 109 721 HF patients (22% HFrEF, 31% HFpEF, 47% unclassified EF; median 18 months' follow-up) were identified. There were 3.2 all-cause outpatient visits per patient-month (HFrEF, 3.3; HFpEF, 3.6); 69% of patients required inpatient stays (HFrEF, 80%; HFpEF, 78%). Overall, 11% of patients experienced hHFs (HFrEF, 23%; HFpEF, 16%), 9% experienced urgent HF visits (HFrEF, 15%; HFpEF, 12%); 26% were hospitalized less than 30 days after first urgent HF visit versus 11% after first hHF. Mean monthly total direct healthcare cost per patient was 11 053; HFpEF, $7482). Conclusions HF-related HCRU is substantial among contemporary real-world HF patients in US Commercial or Medicare supplemental health plans. Patients managed in urgent HF settings were over twice as likely to be hospitalized within 30 days versus those initially hospitalized, suggesting urgent HF visits are important clinical events and quality improvement targets
Recommended from our members
Numerical investigation of the bending of slenderwall-mounted cylinders in low reynolds number flow
The aim of the present studies is construction of reference data for the prediction of the bending of sensor hairs close to the wall in a boundary-layer flow. Three-dimensional direct numerical simulations (DNS) of finite cylinders in single and tandem configuration are carried out. The numerical setup is guided by a towingtank experiment performed at the Technical University of Freiberg. All numerical configurations are chosen to complement and extend the experimental work. The bending curve of the cylinders is estimated by a static approach according to 1st -order Euler-Bernoulli beam theory. Based on the forces, extrapolated from the DNS of the flow field, the influence of wall- and top-end effects and Reynolds numbers between 5 and 40 is examined more deeply. Also, varying positions of cylindrical tandem configurations in stream- and spanwise directions are investigated. The present work shows good agreement between simulation and experiment
- …