11 research outputs found

    PCR effects of melting temperature adjustment of individual primers in degenerate primer pools

    Get PDF
    Deep sequencing of small subunit ribosomal RNA (SSU rRNA) gene amplicons continues to be the most common approach for characterization of complex microbial communities. PCR amplifications of conserved regions of SSU rRNA genes often employ degenerate pools of primers to enable targeting of a broad spectrum of organisms. One little noticed feature of such degenerate primer sets is the potential for a wide range of melting temperatures between the primer variants. The melting temperature variation of primers in a degenerate pool could lead to variable amplification efficiencies and PCR bias. Thus, we sought to adjust the melting temperature of each primer variant individually. Individual primer modifications were used to reduce theoretical melting temperature variation between primers, as well as to introduce inter-cluster nucleotide diversity during Illumina sequencing of primer regions. We demonstrate here the suitability of such primers for microbial community analysis. However, no substantial differences in microbial community structure were revealed when using primers with adjusted melting temperatures, though the optimal annealing temperature decreased

    Multicentre stepped-wedge cluster randomised controlled trial of an antimicrobial stewardship programme in residential aged care: protocol for the START trial.

    Get PDF
    INTRODUCTION: Antimicrobial resistance is a growing global health threat, driven by increasing inappropriate use of antimicrobials. High prevalence of unnecessary use of antimicrobials in residential aged care facilities (RACFs) has driven demand for the development and implementation of antimicrobial stewardship (AMS) programmes. The Stepped-wedge Trial to increase antibiotic Appropriateness in Residential aged care facilities and model Transmission of antimicrobial resistance (START) will implement and evaluate the impact of a nurse-led AMS programme on antimicrobial use in 12 RACFs. METHODS AND ANALYSIS: The START trial will implement and evaluate a nurse-led AMS programme via a stepped-wedge cluster randomised controlled trial design in 12 RACFs over 16 months. The AMS programme will incorporate education, aged care-specific treatment guidelines, documentation forms, and audit and feedback strategies that will target aged care staff, general practitioners, pharmacists, and residents and their families. The intervention will primarily focus on urinary tract infections, lower respiratory tract infections, and skin and soft tissue infections. RACFs will transition from control to intervention phases in random order, two at a time, every 2 months, with a 2-month transition, wash-in period. The primary outcome is the cumulative proportion of residents within each facility prescribed an antibiotic during each month and total days of antibiotic use per 1000 occupied bed days. Secondary outcomes include the number of courses of systemic antimicrobial therapy, antimicrobial appropriateness, antimicrobial resistant organisms, Clostridioides difficile infection, change in antimicrobial susceptibility profiles, hospitalisations and all-cause mortality. Analyses will be conducted according to the intention-to-treat principle. ETHICS AND DISSEMINATION: Ethics approval has been granted by the Alfred Hospital Human Research Ethics Committee (HREC/18/Alfred/591). Research findings will be disseminated through peer-reviewed publications, conferences and summarised reports provided to participating RACFs. TRIAL REGISTRATION NUMBER: NCT03941509

    MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

    Get PDF
    Erratum: https://link.springer.com/article/10.1007/s10863-014-9597-1MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1−/− mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1−/− hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.Funding support from Medical Research Council, United Kingdom; National Institutes of Health, United States; British Heart Foundation, United Kingdo

    [Comment] Redefine statistical significance

    Get PDF
    The lack of reproducibility of scientific studies has caused growing concern over the credibility of claims of new discoveries based on “statistically significant” findings. There has been much progress toward documenting and addressing several causes of this lack of reproducibility (e.g., multiple testing, P-hacking, publication bias, and under-powered studies). However, we believe that a leading cause of non-reproducibility has not yet been adequately addressed: Statistical standards of evidence for claiming discoveries in many fields of science are simply too low. Associating “statistically significant” findings with P < 0.05 results in a high rate of false positives even in the absence of other experimental, procedural and reporting problems. For fields where the threshold for defining statistical significance is P<0.05, we propose a change to P<0.005. This simple step would immediately improve the reproducibility of scientific research in many fields. Results that would currently be called “significant” but do not meet the new threshold should instead be called “suggestive.” While statisticians have known the relative weakness of using P≈0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new (1, 2), a critical mass of researchers now endorse this change. We restrict our recommendation to claims of discovery of new effects. We do not address the appropriate threshold for confirmatory or contradictory replications of existing claims. We also do not advocate changes to discovery thresholds in fields that have already adopted more stringent standards (e.g., genomics and high-energy physics research; see Potential Objections below). We also restrict our recommendation to studies that conduct null hypothesis significance tests. We have diverse views about how best to improve reproducibility, and many of us believe that other ways of summarizing the data, such as Bayes factors or other posterior summaries based on clearly articulated model assumptions, are preferable to P-values. However, changing the P-value threshold is simple and might quickly achieve broad acceptance

    Multicentre stepped-wedge cluster randomised controlled trial of an antimicrobial stewardship programme in residential aged care: protocol for the START trial

    No full text
    Introduction Antimicrobial resistance is a growing global health threat, driven by increasing inappropriate use of antimicrobials. High prevalence of unnecessary use of antimicrobials in residential aged care facilities (RACFs) has driven demand for the development and implementation of antimicrobial stewardship (AMS) programmes. The Stepped-wedge Trial to increase antibiotic Appropriateness in Residential aged care facilities and model Transmission of antimicrobial resistance (START) will implement and evaluate the impact of a nurse-led AMS programme on antimicrobial use in 12 RACFs.Methods and analysis The START trial will implement and evaluate a nurse-led AMS programme via a stepped-wedge cluster randomised controlled trial design in 12 RACFs over 16 months. The AMS programme will incorporate education, aged care-specific treatment guidelines, documentation forms, and audit and feedback strategies that will target aged care staff, general practitioners, pharmacists, and residents and their families. The intervention will primarily focus on urinary tract infections, lower respiratory tract infections, and skin and soft tissue infections. RACFs will transition from control to intervention phases in random order, two at a time, every 2 months, with a 2-month transition, wash-in period. The primary outcome is the cumulative proportion of residents within each facility prescribed an antibiotic during each month and total days of antibiotic use per 1000 occupied bed days. Secondary outcomes include the number of courses of systemic antimicrobial therapy, antimicrobial appropriateness, antimicrobial resistant organisms, Clostridioides difficile infection, change in antimicrobial susceptibility profiles, hospitalisations and all-cause mortality. Analyses will be conducted according to the intention-to-treat principle.Ethics and dissemination Ethics approval has been granted by the Alfred Hospital Human Research Ethics Committee (HREC/18/Alfred/591). Research findings will be disseminated through peer-reviewed publications, conferences and summarised reports provided to participating RACFs.Trial registration number NCT03941509
    corecore