11 research outputs found

    Association of prenatal exposure to early-life adversity with neonatal brain volumes at birth

    Get PDF
    Importance: Exposure to early-life adversity alters the structural development of key brain regions underlying neurodevelopmental impairments. The association between prenatal exposure to adversity and brain structure at birth remains poorly understood. Objective: To examine whether prenatal exposure to maternal social disadvantage and psychosocial stress is associated with neonatal global and regional brain volumes and cortical folding. Design, Setting, and Participants: This prospective, longitudinal cohort study included 399 mother-infant dyads of sociodemographically diverse mothers recruited in the first or early second trimester of pregnancy and their infants, who underwent brain magnetic resonance imaging in the first weeks of life. Mothers were recruited from local obstetric clinics in St Louis, Missouri from September 1, 2017, to February 28, 2020. Exposures: Maternal social disadvantage and psychosocial stress in pregnancy. Main Outcomes and Measures: Confirmatory factor analyses were used to create latent constructs of maternal social disadvantage (income-to-needs ratio, Area Deprivation Index, Healthy Eating Index, educational level, and insurance status) and psychosocial stress (Perceived Stress Scale, Edinburgh Postnatal Depression Scale, Everyday Discrimination Scale, and Stress and Adversity Inventory). Neonatal cortical and subcortical gray matter, white matter, cerebellum, hippocampus, and amygdala volumes were generated using semiautomated, age-specific, segmentation pipelines. Results: A total of 280 mothers (mean [SD] age, 29.1 [5.3] years; 170 [60.7%] Black or African American, 100 [35.7%] White, and 10 [3.6%] other race or ethnicity) and their healthy, term-born infants (149 [53.2%] male; mean [SD] infant gestational age, 38.6 [1.0] weeks) were included in the analysis. After covariate adjustment and multiple comparisons correction, greater social disadvantage was associated with reduced cortical gray matter (unstandardized β = -2.0; 95% CI, -3.5 to -0.5; P = .01), subcortical gray matter (unstandardized β = -0.4; 95% CI, -0.7 to -0.2; P = .003), and white matter (unstandardized β = -5.5; 95% CI, -7.8 to -3.3; P \u3c .001) volumes and cortical folding (unstandardized β = -0.03; 95% CI, -0.04 to -0.01; P \u3c .001). Psychosocial stress showed no association with brain metrics. Although social disadvantage accounted for an additional 2.3% of the variance of the left hippocampus (unstandardized β = -0.03; 95% CI, -0.05 to -0.01), 2.3% of the right hippocampus (unstandardized β = -0.03; 95% CI, -0.05 to -0.01), 3.1% of the left amygdala (unstandardized β = -0.02; 95% CI, -0.03 to -0.01), and 2.9% of the right amygdala (unstandardized β = -0.02; 95% CI, -0.03 to -0.01), no regional effects were found after accounting for total brain volume. Conclusions and Relevance: In this baseline assessment of an ongoing cohort study, prenatal social disadvantage was associated with global reductions in brain volumes and cortical folding at birth. No regional specificity for the hippocampus or amygdala was detected. Results highlight that associations between poverty and brain development begin in utero and are evident early in life. These findings emphasize that preventive interventions that support fetal brain development should address parental socioeconomic hardships

    Prenatal exposure to maternal social disadvantage and psychosocial stress and neonatal white matter connectivity at birth

    Get PDF
    Early life adversity (social disadvantage and psychosocial stressors) is associated with altered microstructure in fronto-limbic pathways important for socioemotional development. Understanding when these associations begin to emerge may inform the timing and design of preventative interventions. In this longitudinal study, 399 mothers were oversampled for low income and completed social background measures during pregnancy. Measures were analyzed with structural equation analysis resulting in two latent factors: social disadvantage (education, insurance status, income-to-needs ratio [INR], neighborhood deprivation, and nutrition) and psychosocial stress (depression, stress, life events, and racial discrimination). At birth, 289 healthy term-born neonates underwent a diffusion MRI (dMRI) scan. Mean diffusivity (MD) and fractional anisotropy (FA) were measured for the dorsal and inferior cingulum bundle (CB), uncinate, and fornix using probabilistic tractography in FSL. Social disadvantage and psychosocial stress were fitted to dMRI parameters using regression models adjusted for infant postmenstrual age at scan and sex. Social disadvantage, but not psychosocial stress, was independently associated with lower MD in the bilateral inferior CB and left uncinate, right fornix, and lower MD and higher FA in the right dorsal CB. Results persisted after accounting for maternal medical morbidities and prenatal drug exposure. In moderation analysis, psychosocial stress was associated with lower MD in the left inferior CB among the lower-to-higher socioeconomic status (SES) (INR ≥ 200%) group, but not the extremely low SES (INR \u3c 200%) group. Increasing access to social welfare programs that reduce the burden of social disadvantage and related psychosocial stressors may be an important target to protect fetal brain development in fronto-limbic pathways

    Social disadvantage during pregnancy: Effects on gestational age and birthweight

    Get PDF
    OBJECTIVE: Whether psychosocial adversity during pregnancy impacts fetal health outcomes at birth remains underexplored. This is a critical issue given significant social disadvantage and psychosocial stress faced by pregnant women worldwide. STUDY DESIGN: Measures of social disadvantage and psychological factors, and medical/reproductive and nutritional health status in pregnant women were obtained at each trimester. Using Structural Equation Modeling (SEM), we investigated the relationship of forms of adversity to each other and to infant gestational age, and birthweight. RESULTS: Among 399 singletons, Social Disadvantage significantly predicted gestational age (p = 0.003), and residual birthweight (p = 0.006). There was a 0.4 week decrease in gestational age and a 3% decrease in birthweight for each standard deviation increase in Social Disadvantage. CONCLUSION: Significant negative effects of social adversity on the developing fetus were found. Notably, these effects emerged despite good prenatal care and after accounting for maternal age and medical reproductive risk factors

    Role of Inter-Hemispheric Transfer in Generating Visual Evoked Potentials in V1-Damaged Brain Hemispheres

    No full text
    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision

    Impaired hippocampal development and outcomes in very preterm infants with perinatal brain injury

    Get PDF
    Preterm infants are at high risk for brain injury during the perinatal period. Intraventricular hemorrhage and periventricular leukomalacia, the two most common patterns of brain injury in prematurely-born children, are associated with poor neurodevelopmental outcomes. The hippocampus is known to be critical for learning and memory; however, it remains unknown how these forms of brain injury affect hippocampal growth and how the resulting alterations in hippocampal development relate to childhood outcomes. To investigate these relationships, hippocampal segmentations were performed on term equivalent MRI scans from 55 full-term infants, 85 very preterm infants (born ≤32 weeks gestation) with no to mild brain injury and 73 very preterm infants with brain injury (e.g., grade III/IV intraventricular hemorrhage, post-hemorrhagic hydrocephalus, cystic periventricular leukomalacia). Infants then underwent standardized neurodevelopmental testing using the Bayley Scales of Infant and Toddler Development, 3rd edition at age 2 years, corrected for prematurity. To delineate the effects of brain injury on early hippocampal development, hippocampal volumes were compared across groups and associations between neonatal volumes and neurodevelopmental outcomes at age 2 years were explored. Very preterm infants with brain injury had smaller hippocampal volumes at term equivalent age compared to term and very preterm infants with no to mild injury, with the smallest hippocampi among those with grade III/IV intraventricular hemorrhage and post-hemorrhagic hydrocephalus. Further, larger ventricle size was associated with smaller hippocampal size. Smaller hippocampal volumes were related to worse motor performance at age 2 years across all groups. In addition, smaller hippocampal volumes in infants with brain injury were correlated with impaired cognitive scores at age 2 years, a relationship specific to this group. Consistent with our preclinical findings, these findings demonstrate that perinatal brain injury is associated with hippocampal size in preterm infants, with smaller volumes related to domain-specific neurodevelopmental impairments in this high-risk clinical population. Keywords: Hippocampus, Very preterm infant, White matter injury, Neurodevelopment, Magnetic resonance imagin

    Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure

    Get PDF
    Abstract Prenatal exposure to heightened maternal inflammation has been associated with adverse neurodevelopmental outcomes, including atypical brain maturation and psychiatric illness. In mothers experiencing socioeconomic disadvantage, immune activation can be a product of the chronic stress inherent to such environmental hardship. While growing preclinical and clinical evidence has shown links between altered neonatal brain development and increased inflammatory states in utero, the potential mechanism by which socioeconomic disadvantage differentially impacts neural-immune crosstalk remains unclear. In the current study, we investigated associations between socioeconomic disadvantage, gestational inflammation, and neonatal white matter microstructure in 320 mother-infant dyads over-sampled for poverty. We analyzed maternal serum levels of four cytokines (IL-6, IL-8, IL-10, TNF-α) over the course of pregnancy in relation to offspring white matter microstructure and socioeconomic disadvantage. Higher average maternal IL-6 was associated with very low socioeconomic status (SES; INR < 200% poverty line) and lower neonatal corticospinal fractional anisotropy (FA) and lower uncinate axial diffusivity (AD). No other cytokine was associated with SES. Higher average maternal IL-10 was associated with lower FA and higher radial diffusivity (RD) in corpus callosum and corticospinal tracts, higher optic radiation RD, lower uncinate AD, and lower FA in inferior fronto-occipital fasciculus and anterior limb of internal capsule tracts. SES moderated the relationship between average maternal TNF-α levels during gestation and neonatal white matter diffusivity. When these interactions were decomposed, the patterns indicated that this association was significant and positive among very low SES neonates, whereby TNF-α was inversely and significantly associated with inferior cingulum AD. By contrast, among the more advantaged neonates (lower-to-higher SES [INR ≥ 200% poverty line]), TNF-α was positively and significantly associated with superior cingulum AD. Taken together, these findings suggest that the relationship between prenatal cytokine exposure and white matter microstructure differs as a function of SES. These patterns are consistent with a scenario where gestational inflammation’s effects on white matter development diverge depending on the availability of foundational resources in utero
    corecore