10,699 research outputs found
Large amplitude oscillations in prominences
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called âprominence seismologyâ. There are two types of oscillatory phenomena observed in prominences; âsmall
amplitude oscillationsâ (2â3 km sâ1), which are quite common, and âlarge-amplitude oscillationsâ (>20 km sâ1) for which observations are scarce. Large-amplitude oscillations have been found as âwinking filamentâ in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fastmode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology
Large amplitude oscillation of an erupting filament as seen in EUV, H-alpha and microwave observations
We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi (Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (â1 kmâsâ1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 kmâsâ1 and 15â000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated
Safe, secure or punctual? A simulator study of train driver response to reports of explosives on a metro train
Many transport organizations now regard regular employees as important contributors to their security strategies. For this reason, it is essential to understand the interaction between service and security tasks. There is empirical evidence, for example, that workers under pressure to be punctual make more errors in the performance of safety procedures. It is therefore useful to determine whether punctuality goals have a similar effect on the performance of security procedures.
This article reports a study conducted on a metropolitan rail system driving simulator to test whether train drivers also âtake shortcutsâ in the perfomance of security procedures when placed under pressure of punctuality. Four hypotheses were tested using performance measures of two groups of 10 participants. The results show that there is a conflict not only between service and security goals, but also between safety and security goals
Partially-erupting prominences: a comparison between observations and model-predicted observables
<p><b>Aims:</b> We investigate several partially-erupting prominences to study their relationship with other CME-associated phenomena and compare these observations with observables predicted by a model of partially-expelled-flux-ropes (Gibson & Fan 2006a, ApJ, 637, L65; 2006b, J. Geophys. Res., 111, 12103).</p>
<p><b>Methods:</b> We studied 6 selected events with partially-erupting prominences using multi-wavelength observations recorded by the Extreme-ultraviolet Imaging Telescope (EIT), Transition Region and Coronal Explorer (TRACE), Mauna Loa Solar Observatory (MLSO), Big Bear Solar Observatory (BBSO), and Soft X-ray Telescope (SXT). The observational features associated with partially-erupting prominences were then compared with the predicted observables from the model.</p>
<p><b>Results:</b> The partially-expelled-flux-rope (PEFR) model can explain the partial eruption of these prominences, and in addition predicts a variety of other CME-related observables that provide evidence of internal reconnection during eruption. We find that all of the partially-erupting prominences studied in this paper exhibit indirect evidence of internal reconnection. Moreover, all cases showed evidence of at least one observable unique to the PEFR model, e.g., dimmings external to the source region and/or a soft X-ray cusp overlying a reformed sigmoid.</p>
<p><b>Conclusions:</b> The PEFR model provides a plausible mechanism to explain the observed evolution of partially-erupting-prominence-associated CMEs in our study.</p>
Precedence-type Test based on Progressively Censored Samples
In this paper, we introduce precedence-type tests for testing the hypothesis that two distribution functions are equal, which is an extension of the precedence life-test rst proposed by Nelson (1963), when the two samples are progressively Type-II censored. The null distributions of the test statistics are derived. Critical values for some combination of sample sizes and censoring schemes for the proposed tests are presented. Then, we present the exact power functions under the Lehmann alternative, and compare the exact power as well as simulated power (under location-shift) of the proposed precedence test based on nonparametric estimates of CDF with other precedence-type tests. We then examine the power properties of the proposed test procedures through Monte Carlo simulations. Two examples are presented to illustrate all the test procedures discussed here. Finally, we make some concluding remarks.Precedence test; Product-limit estimator; Type-II progressive censoring; Life-testing; level of significance; power; Lehmann alternative; Monte Carlo simulations
Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy
An experimental test of the electron energy scale linearities of SNO+ and
EJ-301 scintillators was carried out using a Compton spectrometer with
electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was
explicitly demonstrated. It was found that the response of both types of
scintillators with respect to electrons becomes non-linear below ~0.4 MeV. An
explanation is given in terms of Cherenkov light absorption and re-emission by
the scintillators.Comment: 8 pages, 7 figure
Nuclear magnetic resonance probes for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact devices
We propose a probe based on nuclear relaxation and Knight shift measurements
for the Kondo scenario for the "0.7 feature" in semiconductor quantum point
contact (QPC) devices. We show that the presence of a bound electron in the QPC
would lead to a much higher rate of nuclear relaxation compared to nuclear
relaxation through exchange of spin with conduction electrons. Furthermore, we
show that the temperature dependence of this nuclear relaxation is very
non-monotonic as opposed to the linear-T relaxation from coupling with
conduction electrons. We present a qualitative analysis for the additional
relaxation due to nuclear spin diffusion (NSD) and study the extent to which
NSD affects the range of validity of our method. The conclusion is that nuclear
relaxation, in combination with Knight shift measurements, can be used to
verify whether the 0.7 feature is indeed due to the presence of a bound
electron in the QPC.Comment: Published version. Appears in a Special Section on the 0.7 Feature
and Interactions in One-Dimensional Systems. 16 page
Potential Explosive Device on a Commuter Train: What drives train drivers to deviate from the security procedure?
Explosives pose a major threat to urban metro rail systems. Train drivers are therefore expected to regularly perform security procedures in response to reports of suspicious items on the train. This study was conducted to develop a multi-factorial account of deviation from one such security procedure by train drivers. By analysing data from focus group interviews with 30 train drivers, observation in a rail simulator, actual cab rides, and training material four major themes emerged to explain why drivers may deliberately deviate from following normative procedures designed by their managers. This included perceived pressure from safety and service goals, stress and fatigue during peak hours of operation, and workload created by security tasks. The results are organised in a succinct model that draws a link between driversâ perceived pressure from multiple goals, and the changing driving conditions in which they perform. The study proposes ways for managers of urban commuter rail networks to understand the pressures that their drivers face in performing security tasks that are not part of their conventional job profile. The findings can inform changes in training methods, encourage drivers to discuss their reasons for deliberate rule violation, and support the design of security procedures more likely to be implemented
- âŠ