464 research outputs found

    Introduction to plasma accelerators : the basics

    Get PDF
    In this article, we concentrate on the basic physics of relativistic plasma wave accelerators. The generation of relativistic plasma waves by intense lasers or electron beams in low-density plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients using various plasma wave drivers; these include wakefield accelerators driven by photon, electron, and ion beams. We describe the basic equations and show how intense beams can generate a large-amplitude relativistic plasma wave capable of accelerating particles to high energies. We also demonstrate how these same relativistic electron waves can accelerate photons in plasmas

    Transverse beam envelope structures in strongly coupled stimulated Brillouin scattering

    Get PDF
    We use a newly developed code to investigate cross beam energy transfer via Brillouin scattering in the strong coupling limit. The code couples a single fluid model of the plasma to the complete set of Maxwell's equations. The code can describe beam interaction at arbitrary angles. We observe that the formation of a transverse structure on both beams is caused when the pump beam is fully depleted within the width of the beam. We present a simplified envelope model that confirms the results of the simulation. This transverse beam structure formation has implications for short pulse amplification. The results may also be relevant for fast ignition schemes for inertial confinement fusion

    Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    Get PDF
    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and light sources.Comment: 18 pages, 4 figures, 1 tabl

    Weak collisionless shocks in laser-plasmas

    Get PDF
    We obtain a theory describing laminar shock-like structures in a collisionless plasma and examine the parameter limits, in terms of the ion sound Mach number and the electron/ion temperature ratio, within which these structures exist. The essential feature is the inclusion of finite ion temperature with the result that some ions are reflected from a potential ramp. This destroys the symmetry between upstream and downstream regions that would otherwise give the well-known ion solitary wave solution. We have shown earlier (Cairns et al 2014 Phys. Plasmas 21 022112) that such structures may be relevant to problems such as the existence of strong, localized electric fields observed in laser compressed pellets and laser acceleration of ions. Here we present results on the way in which these structures may produce species separation in fusion targets and suggest that it may be possible to use shock ion acceleration for fast ignition.PostprintPeer reviewe

    Electron trapping and acceleration on a downward density ramp: a two-stage approach

    Get PDF
    In a recent experiment at Lawrence Berkeley National Laboratory (Geddes et al 2008 Phys. Rev. Lett. 100 215004), electron bunches with about 1MeV mean energy and small absolute energy spread (about 0.3MeV) were produced by plasma wave breaking on a downward density ramp. It was then speculated that such a bunch might be accelerated further in a plasma of low constant density, while mostly preserving its small absolute energy spread. This would then lead to a bunch with a high mean energy and very low relative energy spread. In this paper, trapping of a low-energy, low-spread electron bunch on a downward density ramp, followed by acceleration in a constant-density plasma, has been explored through particle-in-cell simulations. It has been found that the scheme works best when it is used as a separate injection stage for a laserwakefield accelerator, where the injection and acceleration stages are separated by a vacuum gap
    • …
    corecore