1,518 research outputs found
Conformally coupled dark matter
Dark matter is obtained from a scalar field coupled conformally to
gravitation; the scalar being a relict of Dirac's gauge function. This
conformally coupled dark matter includes a gas of very light () neutral bosons having spin 0, as well as a
time-dependent global scalar field, both pervading all of the cosmic space. The
time-development of this dark matter in the expanding F-R-W universe is
investigated, and an acceptable cosmological behaviour is obtained.Comment: LaTEX File 10 pages, no figure
The angular momentum-vs-mass relation and the distribution of mass ratios for visual binary systems
The investigation of the angular momentum vs mass relation for binary stars is completed with a study of the 847 systems contained in the Fourth Catalog of Orbits of Visual Binary Stars. Because both J and M of a visual binary depend steeply on the distance to the system (5th and 3rd powers, respectively), and many of the distances are not well known, the study makes use of an auxiliary parameter R which is independent of distance and proportional to JM-5/3. R appears to be uncorrelated with M for the 789 systems for which both can be determined. The non-correlation implies that J ∝M5/3, expected from Kepler's third law, provides a better fit to the visual binaries than does J ∝M2, predicted by some more complex considerations. The distribution function f(q=M2/M1) of mass ratios for the visual binaries results as a byproduct of the investigation. It peaks extremely sharply toward q=1.0 (much more so than for spectroscopic binaries). Because most visual binaries are wide enough to consist of stars that condensed independently (and so that can be thought of as chosen at random from an initial mass function), one expects the real f(q) to rise toward low ratios. Observational selection against the discovery and study of systems with large magnitude differences between the components must be very large indeed to account for the discrepancy between expectation and observation. The alternative is a mechanism for formation of wide binaries that favours equal components. The distribution of mass ratios for eclipsing binaries is given in an appendix. It peaks strongly at q=0.6-0.75 and largely reflects processes of angular momentum, mass, and energy exchange between the stars in contact systems. © 1986 D. Reidel Publishing Company
Positrons from particle dark-matter annihilation in the Galactic halo: propagation Green's functions
We have made a calculation of the propagation of positrons from dark-matter
particle annihilation in the Galactic halo in different models of the dark
matter halo distribution using our 3D code, and present fits to our numerical
propagation Green's functions. We show that the Green's functions are not very
sensitive to the dark matter distribution for the same local dark matter energy
density. We compare our predictions with computed cosmic ray positron spectra
(``background'') for the ``conventional'' CR nucleon spectrum which matches the
local measurements, and a modified spectrum which respects the limits imposed
by measurements of diffuse Galactic gamma-rays, antiprotons, and positrons. We
conclude that significant detection of a dark matter signal requires favourable
conditions and precise measurements unless the dark matter is clumpy which
would produce a stronger signal. Although our conclusion qualitatively agrees
with that of previous authors, it is based on a more realistic model of
particle propagation and thus reduces the scope for future speculations.
Reliable background evaluation requires new accurate positron measurements and
further developments in modelling production and propagation of cosmic ray
species in the Galaxy.Comment: 8 pages, 6 ps-figures, 3 tables, uses revtex. Accepted for
publication in Physical Review D. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
Blue Straggler Stars: Early Observations that Failed to Solve the Problem
In this chapter, I describe early ideas on blue stragglers, and various
observations (some published, some not) that promised but failed to resolve the
question of their origin. I review the data and ideas that were circulating
from Allan Sandage's original discovery in 1953 of "anomalous blue stars" in
the globular cluster M3, up until about 1992, when what seems to have been the
only previous meeting devoted to Blue Straggler Stars (BSSs) was held at the
Space Telescope Science Institute.Comment: Chapter 2, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Pulse separation control for mode-locked far-infrared p-Ge lasers
Active mode locking of the far-infrared p-Ge laser giving a train of 200 ps pulses is achieved via gain modulation by applying an rf electric field together with an additional bias at one end of the crystal parallel to the Voigt-configured magnetic field. Harmonic mode locking yields a train of pulse pairs with variable time separation from zero to half the roundtrip period, where pulse separation is electrically controlled by the external bias to the rf field
Inelastic Dark Matter
Many observations suggest that much of the matter of the universe is
non-baryonic. Recently, the DAMA NaI dark matter direct detection experiment
reported an annual modulation in their event rate consistent with a WIMP relic.
However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of
the region preferred by DAMA. We demonstrate that if the dark matter can only
scatter by making a transition to a slightly heavier state (Delta m ~ 100kev),
the experiments are no longer in conflict. Moreover, differences in the energy
spectrum of nuclear recoil events could distinguish such a scenario from the
standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for
inelastic dark matter in supersymmetric theories.Comment: 20 pages, 6 figure
- …