76 research outputs found

    Single ventricle with persistent truncus arteriosus as two rare entities in an adult patient: a case report

    Get PDF
    Abstract Introduction Single ventricle and truncus arteriosus are both rare congenital cardiac syndromes with limited survival. Their occurrence together is extremely uncommon and prolonged survival is exceptionally rare. We present the case of a patient who had both of these defects with survival to age 45. Case presentation We describe the vase of a 45-year-old man with the unusual occurrence of two very rare congenital cardiac defects. He was found to have both truncus arteriosus and single ventricle with long survival. His history, clinical course, and anatomic findings are discussed along with the factors which may have contributed to his longevity, which is unique in the medical literature. His management reflected the state of medical knowledge at the time when he presented, and although alternate approaches may have been utilized if the patient presented today, this case does indicate the efficacy of the management options available at the time and place of the patient's contacts with the medical care system in Belarus. We discuss the findings, frequency, classification, and management of both of these congenital defects. Conclusion This case demonstrates that patients with very complex congenital cardiac disease may survive to adulthood, presenting challenges in both medical and surgical treatment. As the management of these patients is constantly evolving, and interventional techniques are improving, patients such as this with prolonged survival will be more common, with each case providing insights to future treatment. Challenges in management may include prior care provided in health care systems with limited resources.</p

    Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress

    Get PDF
    Hemodynamic abnormalities have been documented in the chronic fatigue syndrome (CFS), indicating functional disturbances of the autonomic nervous system responsible for cardiovascular regulation. The aim of this study was to explore blood pressure variability and closed-loop baroreflex function at rest and during mild orthostatic stress in adolescents with CFS. We included a consecutive sample of 14 adolescents 12–18 years old with CFS diagnosed according to a thorough and standardized set of investigations and 56 healthy control subjects of equal sex and age distribution. Heart rate and blood pressure were recorded continuously and non-invasively during supine rest and during lower body negative pressure (LBNP) of –20 mmHg to simulate mild orthostatic stress. Indices of blood pressure variability and baroreflex function (α-gain) were computed from monovariate and bivariate spectra in the low-frequency (LF) band (0.04–0.15 Hz) and the high–frequency (HF) band (0.15–0.50 Hz), using an autoregressive algorithm. Variability of systolic blood pressure in the HF range was lower among CFS patients as compared to controls both at rest and during LBNP. During LBNP, compared to controls, α-gain HF decreased more, and α-gain LF and the ratio of α-gain LF/α-gain HF increased more in CFS patients, all suggesting greater shift from parasympathetic to sympathetic baroreflex control. CFS in adolescents is characterized by reduced systolic blood pressure variability and a sympathetic predominance of baroreflex heart rate control during orthostatic stress. These findings may have implications for the pathophysiology of CFS in adolescents

    Complex systems and the technology of variability analysis

    Get PDF
    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients

    Producing diffuse ultrasound reflections from medical instruments using a quadratic residue diffuser.

    No full text
    Simultaneous visualization of tissue and surgical instruments is necessary during ultrasound-guided medical procedures. Standard minimally invasive instruments are typically metallic and act as strong specular scatterers. As a result, such instruments saturate the image or disappear according to the angle of incidence, obscuring nearby tissue and making it difficult to determine the instrument's precise location. The objective of this study was to produce diffusive reflections from the surface of surgical instruments for improved visualization in ultrasound. A surface profile based on a 2D quadratic residue diffuser (QRD) was employed, which has been demonstrated to reduce specular reflection in other acoustic applications. The backscattered echo amplitude from the diffusive surface at various angles of insonation was measured and compared to that from unmodified metal surfaces and heart tissue surfaces. The QRD resulted in an 8 dB reduction of the specular signal. Furthermore, the dynamic range for angles up to 75 degrees was less than 20 dB for the QRD and more than 65 dB for a flat surface. The QRD surface produces two beneficial results for the simultaneous imaging of instruments and tissue. First, the conspicuity of diffusive surfaces in ultrasound images is markedly improved in comparison with unmodified metal surfaces. Secondly, the echo amplitude of diffusive metal surfaces differs in mean and standard deviation from that of tissue facilitating image enhancement and segmentation
    corecore