534 research outputs found
Sequential quantum-enhanced measurement with an atomic ensemble
We propose a quantum-enhanced iterative (with steps) measurement scheme
based on an ensemble of two-level probes which asymptotically approaches
the Heisenberg limit , the number of quantum
resources. The protocol is inspired by Kitaev's phase estimation algorithm and
involves only collective manipulation and measurement of the ensemble. The
iterative procedure takes the shot-noise limited primary measurement with
precision to increasingly precise results
. A straightforward implementation of the algorithm
makes use of a two-component atomic cloud of Bosons in the precision
measurement of a magnetic field.Comment: 5 pages, 1 figur
Long Distance Coupling of a Quantum Mechanical Oscillator to the Internal States of an Atomic Ensemble
We propose and investigate a hybrid optomechanical system consisting of a
micro-mechanical oscillator coupled to the internal states of a distant
ensemble of atoms. The interaction between the systems is mediated by a light
field which allows to couple the two systems in a modular way over long
distances. Coupling to internal degrees of freedom of atoms opens up the
possibility to employ high-frequency mechanical resonators in the MHz to GHz
regime, such as optomechanical crystal structures, and to benefit from the rich
toolbox of quantum control over internal atomic states. Previous schemes
involving atomic motional states are rather limited in both of these aspects.
We derive a full quantum model for the effective coupling including the main
sources of decoherence. As an application we show that sympathetic ground-state
cooling and strong coupling between the two systems is possible.Comment: 14 pages, 5 figure
Strong coupling of a mechanical oscillator and a single atom
We propose and analyze a setup to achieve strong coupling between a single
trapped atom and a mechanical oscillator. The interaction between the motion of
the atom and the mechanical oscillator is mediated by a quantized light field
in a laser driven high-finesse cavity. In particular, we show that high
fidelity transfer of quantum states between the atom and the mechanical
oscillator is in reach for existing or near future experimental parameters. Our
setup provides the basic toolbox for coherent manipulation, preparation and
measurement of micro- and nanomechanical oscillators via the tools of atomic
physics.Comment: 4 pages, 2 figures, minro changes, accepted by PR
Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator
We report experiments in which the vibrations of a micromechanical oscillator
are coupled to the motion of Bose-condensed atoms in a trap. The interaction
relies on surface forces experienced by the atoms at about one micrometer
distance from the mechanical structure. We observe resonant coupling to several
well-resolved mechanical modes of the condensate. Coupling via surface forces
does not require magnets, electrodes, or mirrors on the oscillator and could
thus be employed to couple atoms to molecular-scale oscillators such as carbon
nanotubes.Comment: 9 pages, 4 figure
Atom chip based generation of entanglement for quantum metrology
Atom chips provide a versatile `quantum laboratory on a microchip' for
experiments with ultracold atomic gases. They have been used in experiments on
diverse topics such as low-dimensional quantum gases, cavity quantum
electrodynamics, atom-surface interactions, and chip-based atomic clocks and
interferometers. A severe limitation of atom chips, however, is that techniques
to control atomic interactions and to generate entanglement have not been
experimentally available so far. Such techniques enable chip-based studies of
entangled many-body systems and are a key prerequisite for atom chip
applications in quantum simulations, quantum information processing, and
quantum metrology. Here we report experiments where we generate multi-particle
entanglement on an atom chip by controlling elastic collisional interactions
with a state-dependent potential. We employ this technique to generate
spin-squeezed states of a two-component Bose-Einstein condensate and show that
they are useful for quantum metrology. The observed 3.7 dB reduction in spin
noise combined with the spin coherence imply four-partite entanglement between
the condensate atoms and could be used to improve an interferometric
measurement by 2.5 dB over the standard quantum limit. Our data show good
agreement with a dynamical multi-mode simulation and allow us to reconstruct
the Wigner function of the spin-squeezed condensate. The techniques
demonstrated here could be directly applied in chip-based atomic clocks which
are currently being set up
Bright gap solitons of atoms with repulsive interaction
We report on the first experimental observation of bright matter-wave
solitons for 87Rb atoms with repulsive atom-atom interaction. This counter
intuitive situation arises inside a weak periodic potential, where anomalous
dispersion can be realized at the Brillouin zone boundary. If the coherent
atomic wavepacket is prepared at the corresponding band edge a bright soliton
is formed inside the gap. The strength of our system is the precise control of
preparation and real time manipulation, allowing the systematic investigation
of gap solitons.Comment: 4 pages, 4 figure
An optical lattice on an atom chip
Optical dipole traps and atom chips are two very powerful tools for the
quantum manipulation of neutral atoms. We demonstrate that both methods can be
combined by creating an optical lattice potential on an atom chip. A
red-detuned laser beam is retro-reflected using the atom chip surface as a
high-quality mirror, generating a vertical array of purely optical oblate
traps. We load thermal atoms from the chip into the lattice and observe cooling
into the two-dimensional regime where the thermal energy is smaller than a
quantum of transverse excitation. Using a chip-generated Bose-Einstein
condensate, we demonstrate coherent Bloch oscillations in the lattice.Comment: 3 pages, 2 figure
Microwave potentials and optimal control for robust quantum gates on an atom chip
We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology, and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near-fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes, and extensively discuss the impact of technical noise and imperfections that characterize an actual atom chip. We find an overall infidelity compatible with requirements for fault-tolerant quantum computation
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
- âŚ