315 research outputs found

    Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies

    Get PDF
    In the past few years, many studies investigated the anaerobic digestion microbiome by means of 16S rRNA amplicon sequencing. Results obtained from these studies were compared to each other without taking into consideration the followed procedure for amplicons preparation and data analysis. This negligence was mainly due to the lack of knowledge regarding the biases influencing specific steps of the microbiome investigation process. In the present study, the main technical aspects of the 16S rRNA analysis were checked giving special attention to the approach used for high throughput sequencing. More specifically, the microbial compositions of three laboratory scale biogas reactors were analyzed before and after addition of sodium oleate by sequencing the microbiome with three different approaches: 16S rRNA amplicon sequencing, shotgun DNA and shotgun RNA. This comparative analysis revealed that, in amplicon sequencing, abundance of some taxa (Euryarchaeota and Spirochaetes) was biased by the inefficiency of universal primers to hybridize all the templates. Reliability of the results obtained was also influenced by the number of hypervariable regions under investigation. Finally, amplicon sequencing and shotgun DNA underestimated the Methanoculleus genus, probably due to the low 16S rRNA gene copy number encoded in this taxon

    Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software

    Get PDF
    RNA-seq studies have an important role for both large-scale analysis of gene expression and for transcriptome reconstruction. However, the lack of software specifically developed for the analysis of the transcriptome structure in lower eukaryotes, has so far limited the comparative studies among different species and strains.Results: In order to fill this gap, an innovative software called ORA (Overlapped Reads Assembler) was developed. This software allows a simple and reliable analysis of the transcriptome structure in organisms with a low number of introns. It can also determine the size and the position of the untranslated regions (UTR) and of polycistronic transcripts. As a case study, we analyzed the transcriptional landscape of six S. cerevisiae strains in two different key steps of the fermentation process. This comparative analysis revealed differences in the UTR regions of transcripts. By extending the transcriptome analysis to yeast species belonging to the Saccharomyces genus, it was possible to examine the conservation level of unknown non-coding RNAs and their putative functional role.Conclusions: By comparing the results obtained using ORA with previous studies and with the transcriptome structure determined with other software, it was proven that ORA has a remarkable reliability. The results obtained from the training set made it possible to detect the presence of transcripts with variable UTRs between S. cerevisiae strains. Finally, we propose a regulatory role for some non-coding transcripts conserved within the Saccharomyces genus and localized in the antisense strand to genes involved in meiosis and cell wall biosynthesis

    Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products

    Get PDF
    Eight Streptococcus thermophilus strains of dairy origin isolated in Italy were chosen to investigate autochthonous bacterial diversity in this important technological species. In the present study a comparative analysis of all the 17 S. thermophilus genomes publicly available was performed to identify the core and the variable genes, which vary among strains from 196 to 265. Additionally, correlation between the isolation site and the genetic distance was investigated at genomic level. Results highlight that the phylogenetic reconstruction differs from the geographical strain distribution. Moreover, strain M17PTZA496 has a genome of 2.15 Mbp, notably larger than that of the others, determined by lateral gene transfer (including phage-mediated incorporation) and duplication events. Important technological characters, such as growth kinetics, bacteriocin production, acidification kinetics and surface adhesion capability were studied in all the Italian strains. Results indicate a wide range of variability in adhesion properties that significantly clustered strains into four groups. Genomic differences among strains in relation to these characters were identified but a clear correlation between genotype and phenotype was not always found since most of the genomic modifications arise from single nucleotide polymorphisms. This research represents a step forward in the identification of strains-specific functions in Streptococcus thermophilus and it has also the potential to provide valuable information to predict strain specific behaviors in industrial processes

    Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes

    Get PDF
    The present research is the first comprehensive study regarding the thermophilic anaerobic degradation of cheese wastewater, which combines the evaluation of different reactor configurations (i.e. single and two-stage continuous stirred tank reactors) on the process efficiency and the in-depth characterization of the microbial community structure using genome-centric metagenomics. Both reactor configurations showed acidification problems under the tested organic loading rates (OLRs) of 3.6 and 2.4 g COD/L-reactor day and the hydraulic retention time (HRT) of 15 days. However, the two-stage design reached a methane yield equal to 95% of the theoretical value, in contrast with the single stage configuration, which reached a maximum of 33% of the theoretical methane yield. The metagenomic analysis identified 22 new population genomes and revealed that the microbial compositions between the two configurations were remarkably different, demonstrating a higher methanogenic biodiversity in the two-stage configuration. In fact, the acidogenic reactor of the serial configuration was almost solely composed by the lactose degrader Bifidobacterium crudilactis UC0001. The predictive functional analyses of the main population genomes highlighted specific metabolic pathways responsible for the AD process and the mechanisms of main intermediates production. Particularly, the acetate accumulation experienced by the single stage configuration was mainly correlated to the low abundant syntrophic acetate oxidizer Tepidanaerobacter acetatoxydans UC0018 and to the absence of aceticlastic methanogens

    Co-fermentation of onion and whey: a promising synbiotic combination

    Get PDF
    Juice from three different onion varieties was mixed with sweet whey and used as growth 18 substrate for four lactic acid bacteria strains, isolated from agri-food by-products, to 19 evaluate the possibility to exploit such substrates, known to be reach in bioactive 20 molecules, as fermented drinks for human consumption. Results show good growth 21 performance for Lactobacillus fabifermentans, L. plantarum and Streptococcus 22 macedonicus. On the contrary S. thermophilus did not grow in the mixture while S. 23 macedonicus did not develop in pure onion juice. After 48 h the overall sugar content 24 decreased significantly. In particular, glucose was not utilized while inulin was completely 25 preserved. Moreover, MS/MS analysis revealed the presence of the rare trisaccharide 26 lactosucrose. 27 In the light of these considerations, the formulation obtained may be considered a potential 28 synbiotic product with pleasant taste and beneficial effects for consumers and also an eco-29 friendly solution to convert an agro-food by-product into value added products

    Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities

    Get PDF
    Multi-omics data integration via mechanistic models of metabolism is a scalable and flexible framework for exploring biological hypotheses in microbial systems. However, although most microorganisms are uncultur-able, such multi-omics modeling is limited to isolate microbes or simple synthetic communities. Here, we developed an approach for modeling microbial activity and interactions that leverages the reconstruction of metagenome-assembled genomes and associated genome-centric metatranscriptomes. At its core, we designed a method for condition-specific metabolic modeling of microbial communities through the integra-tion of metatranscriptomic data. Using this approach, we explored the behavior of anaerobic digestion con-sortia driven by hydrogen availability and human gut microbiota dysbiosis associated with Crohn's disease, identifying condition-dependent amino acid requirements in archaeal species and a reduced short-chain fatty acid exchange network associated with disease, respectively. Our approach can be applied to complex microbial communities, allowing a mechanistic contextualization of multi-omics data on a metagenome scale

    Genome sequence of Enterococcus mundtii EM01, isolated from Bombyx mori midgut and responsible for flacherie disease in silkworms reared on an artificial diet

    Get PDF
    The whole genome sequence of Enterococcus mundtii strain EM01 is reported here. The isolate proved to be the cause of flacherie in Bombyx mori. To date, the genomes of 11 other E. mundtii strains have been sequenced. EM01 is the only strain that displayed active pathological effects on its associated animal species
    • …
    corecore