10 research outputs found

    Population dynamics and range shifts of moose (Alces alces) during the Late Quaternary

    Full text link
    Aim: Late Quaternary climate oscillations had major impacts on species distributions and abundances across the northern Holarctic. While many large mammals in this region went extinct towards the end of the Quaternary, some species survived and flourished. Here, we examine population dynamics and range shifts of one of the most widely distributed of these, the moose (Alces alces). Location: Northern Holarctic. Taxon: Moose (A. alces). Methods: We collected samples of modern and ancient moose from across their present and former range. We assessed their phylogeographical relations using part of the mitochondrial DNA in conjunction with radiocarbon dating to investigate the history of A. alces during the last glacial. Results: This species has a relatively shallow history, with the most recent common ancestor estimated at ca. 150–50 kyr. Ancient samples corroborate that its region of greatest diversity is in east Asia, supporting proposals that this is the region of origin of all extant moose. Both eastern and western haplogroups occur in the Ural Mountains during the last glacial period, implying a broader contact zone than previously proposed. It seems that this species went extinct over much of its northern range during the last glacial maximum (LGM) and recolonized the region with climate warming beginning around 15,000 yr bp. The post-LGM expansion included a movement from northeast Siberia to North America via Beringia, although the northeast Siberian source population is not the one currently occupying that area. Main conclusions: Moose are a relatively recently evolved species but have had a dynamic history. As a large-bodied subarctic browsing species, they were seemingly confined to refugia during full-glacial periods and expanded their range northwards when the boreal forest returned after the LGM. The main modern phylogeographical division is ancient, though its boundary has not remained constant. Moose population expansion into America was roughly synchronous with human and red deer expansion. © 2020 The Authors. Journal of Biogeography published by John Wiley & Sons LtdWe warmly thank the following museums, curators and people for access to samples: the late Andrei Sher, Severtsov Institute, Moscow; Andy Currant, Natural History Museum, London; Alfred Gardner, Smithsonian, Washington DC; R. Dale Guthrie, University of Alaska, Fairbanks; John de Vos, National Museum of Natural History (Naturalis), Leiden; Eileen Westwig, American Museum of Natural History, NY; Fyodor Shidlovsky, Ice-Age Museum, Moscow; Tong Haowen, Institute of Vertebrate Palaeontology and Paleoanthropology, Beijing; Mammoth Museum, Yakutsk; Geological Museum, Yakutsk; Paleontological Institute, Moscow; Royal Alberta Museum, Edmonton; Zoological Institute, Saint Petersburg; Museum of the Institute of Plant and Animal Ecology, Ekaterinburg. We thank our Yukon First Nation research partners for their continued support for our work on the ice age fossils of Yukon Territory. We are grateful to the placer gold mining community and the Tr'ond?k Hw?ch'in First Nation for their continued support and partnership with our research in the Klondike goldfields region; and the Vuntut Gwitchin First Nation for their collaboration with research in the Old Crow region. We would also like to thank Shai Meiri for help in drawing the map and useful discussion, Tony Stuart for access to radiocarbon dates, and Iris van Pijlen for laboratory assistance. This research was funded by NERC grant NE/G00269X/1 through the European Union FP7 ERA-NET program BiodivERsA. Funding for AMS dating was provided through NERC/AHRC/ORAU Grant NF/2008/2/15

    The mammals of Angola

    Get PDF
    Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to be associated with unique physiographic settings such as the Angolan Escarpment. The mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11 Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio
    corecore