142 research outputs found

    No Pain No Gain: Standards mapping in Latimer Core development

    Get PDF
    Latimer Core (LtC) is a new proposed Biodiversity Information Standards (TDWG) data standard that supports the representation and discovery of natural science collections by structuring data about the groups of objects that those collections and their subcomponents encompass (Woodburn et al. 2022). It is designed to be applicable to a range of use cases that include high level collection registries, rich textual narratives and semantic networks of collections, as well as more granular, quantitative breakdowns of collections to aid collection discovery and digitisation planning.As a standard that is (in this first version) focused on natural science collections, LtC has significant intersections with existing data standards and models (Fig. 1) that represent individual natural science objects and occurrences and their associated data (e.g., Darwin Core (DwC), Access to Biological Collection Data (ABCD), Conceptual Reference Model of the International Committee on Documentation (CIDOC-CRM)). LtC's scope also overlaps with standards for more generic concepts like metadata, organisations, people and activities (i.e., Dublin Core, World Wide Web Consortium (W3C) ORG Ontology and PROV Ontology, Schema.org). LtC represents just an element of this extended network of data standards for the natural sciences and related concepts. Mapping between LtC and intersecting standards is therefore crucial for avoiding duplication of effort in the standard development process, and ensuring that data stored using the different standards are as interoperable as possible in alignment with FAIR (Findable, Accessible, Interoperable, Reusable) principles. In particular, it is vital to make robust associations between records representing groups of objects in LtC and records (where available) that represent the objects within those groups.During LtC development, efforts were made to identify and align with relevant standards and vocabularies, and adopt existing terms from them where possible. During expert review, a more structured approach was proposed and implemented using the Simple Knowledge Organization System (SKOS) mappingRelation vocabulary. This exercise helped to better describe the nature of the mappings between new LtC terms and related terms in other standards, and to validate decisions around the borrowing of existing terms for LtC. A further exercise also used elements of the Simple Standard for Sharing Ontological Mappings (SSSOM) to start to develop a more comprehensive set of metadata around these mappings. At present, these mappings (Suppl. material 1 and Suppl. material 2) are provisional and not considered to be comprehensive, but should be further refined and expanded over time.Even with the support provided by the SKOS and SSSOM standards, the LtC experience has proven the mapping process to be far from straightforward. Different standards vary in how they are structured, for example, DwC is a 'bag of terms', with informal classes and no structural constraints, while more structured standards and ontologies like ABCD and PROV employ different approaches to how structure is defined and documented. The various standards use different metadata schemas and serialisations (e.g., Resource Description Framework (RDF), XML) for their documentation, and different approaches to providing persistent, resolvable identifiers for their terms. There are also many subtle nuances involved in assessing the alignment between the concepts that the source and target terms represent, particularly when assessing whether a match is exact enough to allow the existing term to be adopted. These factors make the mapping process quite manual and labour-intensive. Approaches and tools, such as developing decision trees (Fig. 2) to represent the logic involved and further exploration of the SSSOM standard, could help to streamline this process.In this presentation, we will discuss the LtC experience of the standard mapping process, the challenges faced and methods used, and the potential to contribute this experience to a collaborative standards mapping within the anticipated TDWG Standards Mapping Interest Group

    Matching commercial thrips predating phytoseids with the highly diversified climatic conditions of different strawberry production systems

    Get PDF
    Flower inhabiting thrips (Order: Thysanoptera) are a major threat to fruit quality in strawberry production around the world. As chemical control is often inefficient, alternative control measures are of broad and current interest. Their fast reproduction makes predatory mites highly suitable for thrips control in a crop with a relatively short cropping season like strawberry. However, climatic conditions of strawberry production can differ strongly depending on the production system (glasshouse, plastic tunnel, open field, etc.) and the time span of cultivation (depending mostly on planting date and the type of cultivar: summer-or everbearing). As predatory mites typically display a temperature-dependent life history and the current commercially available thrips predating phytoseids vary in geographic origin, one can assume that under certain climatic conditions some species will be more applicable than others. The goal of this study is to determine which species are suitable for which climatic conditions. Therefore all (Belgian) production systems and time spans are categorized into three climate types, simulated in the laboratory. The population build-up of seven predatory mite species (A. degenerans, A. montdorensis, A. andersoni, A. limonicus, A. swirskii, N. cucumeris and E. gallicus) were assessed for each of these climatic conditions. Under the coldest condition (A), the in West-Europe indigenous E. gallicus was the only species with a significant population build up. When moderate conditions (B) were simulated E. gallicus, N. cucumeris and A. limonicus were most successful. The warmest regime (C) was most adequate for E. gallicus and A. swirskii

    WorldFAIR Project (D10.1) Agriculture-related pollinator data standards use cases report

    Get PDF
    Although pollination is an essential ecosystem service that sustains life on Earth, data on this vital process is largely scattered or unavailable, limiting our understanding of the current state of pollinators and hindering effective actions for their conservation and sustainable management. In addition to the well-known challenges of biodiversity data management, such as taxonomic accuracy, the recording of biotic interactions like pollination presents further difficulties in proper representation and sharing. Currently, the widely-used standard for representing biodiversity data, Darwin Core, lacks properties that allow for adequately handling biotic interaction data, and there is a need for FAIR vocabularies for properly representing plant-pollinator interactions. Given the importance of mobilising plant-pollinator interaction data also for food production and security, the Research Data Alliance Improving Global Agricultural Data Community of Practice has brought together partners from representative groups to address the challenges of advancing interoperability and mobilising plant-pollinator data for reuse. This report presents an overview of projects, good practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions, along with a work plan for conducting pilots in the next phase of the project. We present the main existing data indexing systems and aggregators for plant-pollinator interaction data, as well as citizen science and community-based sourcing initiatives. We also describe current challenges for taxonomic knowledge and present two data models and one semantic tool that will be explored in the next phase. In preparation for the next phase, which will provide best practices and FAIR-aligned guidelines for documenting and sharing plant-pollinator interactions based on pilot efforts with data, this Case Study comprehensively examined the methods and platforms used to create and share such data. By understanding the nature of data from various sources and authors, the alignment of the retrieved datasets with the FAIR principles was also taken into consideration. We discovered that a large amount of data on plant-pollinator interaction is made available as supplementary files of research articles in a diversity of formats and that there are opportunities for improving current practices for data mobilisation in this domain. The diversity of approaches and the absence of appropriate data vocabularies causes confusion, information loss, and the need for complex data interpretation and transformation. Our explorations and analyses provided valuable insights for structuring the next phase of the project, including the selection of the pilot use cases and the development of a ‘FAIR best practices’ guide for sharing plant-pollinator interaction data. This work primarily focuses on enhancing the interoperability of data on plant-pollinator interactions, envisioning its connection with the effort WorldFAIR is undertaking to develop a Cross-Domain Interoperability Framework. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393

    A botanical demonstration of the potential of linking data using unique identifiers for people

    Get PDF
    Natural history collection data available digitally on the web have so far only made limited use of the potential of semantic links among themselves and with cross-disciplinary resources. In a pilot study, botanical collections of the Consortium of European Taxonomic Facilities (CETAF) have therefore begun to semantically annotate their collection data, starting with data on people, and to link them via a central index system. As a result, it is now possible to query data on collectors across different collections and automatically link them to a variety of external resources. The system is being continuously developed and is already in production use in an international collection portal

    The Meise Botanic Garden Herbarium Data Management Plan

    Get PDF
    This Data Management Plan outlines a comprehensive strategy for handling, storing, and sharing of data generated by digitisation projects of the herbarium at Meise Botanic Garden with Index Herbarium code BR. Its purpose is to establish clear guidelines for both staff and external users, specifying the terms governing data usage and storage. It aims to prioritise the FAIR principles (Findable, Accessible, Interoperable and Reusable), ensure responsible data management, facilitate long-term preservation, uphold legal and ethical obligations, all while aligning with the research excellence mission of Meise Botanic Garden. This plan serves as a guiding document to effectively and efficiently achieve these goals

    SYNTHESYS+ Virtual Access - Report on the Ideas Call (October to November 2019)

    Get PDF
    The SYNTHESYS consortium has been operational since 2004, and has facilitated physical access by individual researchers to European natural history collections through its Transnational Access programme (TA). For the first time, SYNTHESYS+ will be offering virtual access to collections through digitisation, with two calls for the programme, the first in 2020 and the second in 2021. The Virtual Access (VA) programme is not a direct digital parallel of Transnational Access - proposals for collections digitisation will be prioritised and carried out based on community demand, and data must be made openly available immediately. A key feature of Virtual Access is that, unlike TA, it does not select the researchers to whom access is provided. Because Virtual Access in this way is new to the community and to the collections-holding institutions, the SYNTHESYS+ consortium invited ideas through an Ideas Call, that opened on 7th October 2019 and closed on 22nd November 2019, in order to assess interest and to trial procedures. This report is intended to provide feedback to those who participated in the Ideas Call and to help all applicants to the first SYNTHESYS+Virtual Access Call that will be launched on 20th of February 2020.This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published pdf

    Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in Îł-Fe nanoparticles

    Get PDF
    Îł-Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of Îł-Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a=3.76(2)Å and c=3.50(2)Å, and a magnetic moment of 2.45(5) ÎŒB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured Îł-Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of Îł-Fe taking tetragonal distortion into account.The authors thank the Fund for Scientific ResearchFlanders, the Concerted Research Action of the KU Leuven (GOA/14/007), the KU Leuven BOF (STRT/14/002), the Hercules Foundation, the Portuguese Foundation for Science and Technology (CERN/FIS-NUC/0004/2015), and the European Union Seventh Framework through ENSAR2 (European Nuclear Science and Applications Research, Project No. 654002), and SPIRIT (Support of Public and Industrial Research Using Ion Beam Technology, Contract No. 227012). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing beam time (experiments 26-01-1018, 26-01-1057, 20-02-728, HC-1850, HC-2208), as well as C. Baehtz, N. Boudet, and N. Blancand for support during the experiments. We acknowledge the ISOLDE-CERN facility for providing beam time (experiment IS580) and technical assistance. The authors (L.M.C.P., F.K.) acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Advanced Microscopy, Australian National University. We also acknowledge the contribution of Prof. Mark Ridgway (Australian National University), who passed away before the work was completed

    WorldFAIR (D10.2) Agricultural Biodiversity Standards, Best Practices and Guidelines Recommendations

    Get PDF
    The WorldFAIR Case Study on Agricultural Biodiversity (WP10) addresses the challenges of advancing interoperability and mobilising plant-pollinator interactions data for reuse. Previous efforts, reported in Deliverable 10.1 - from our discovery phase - provided an overview of projects, best practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions, along with a work plan for conducting pilot studies. The current report presents the results from the pilot phase of the Case Study, which involved six pilot studies adopting standards and recommendations from the discovery phase. The pilots enabled the handling  of concrete examples and the generation of reusable materials tailored to this domain, as well as providing better estimates for the overall costs of adoption for future projects. Our approach for plant-pollinator data standardisation is based on the widely-used standard for representing biodiversity data, Darwin Core, developed and maintained by the Biodiversity Information Standards (TDWG), in conjunction with a data model and vocabulary proposed by the Brazilian Network of Plant-Pollinator Interactions (REBIPP). The pilot studies also underwent a process of “FAIRification” (i.e., transforming data into a format that adheres to the FAIR data principles) using the Global Biotic Interactions (GloBI, Poelen et al. 2014) platform. Additionally, we present the publishing model for Biotic Interactions developed in collaboration with the Global Biodiversity Information Facility (GBIF), which leads the WorldFAIR Case Study on Biodiversity, as part of the proposed GBIF New Data Model, along with a concrete example of its use by one of the pilots. This effort led to the development of ‘FAIR best practices’ guidelines for sharing plant-pollinator interaction data. The primary focus of this work is to enhance the interoperability of data on plant-pollinator interactions, aligning with WorldFAIR efforts  to develop a Cross-Domain Interoperability Framework. We have successfully promoted the adoption of standards and increased the interoperability of plant-pollinator interactions data, resulting in a process that allows for tracing the provenance of the data, as well as facilitating the reuse of datasets crucial for understanding this essential ecosystem service and its changes due to human impact. Our effort demonstrates there are several possible paths for FAIRification, tailored to institutional needs, and we have shown that different approaches can contribute to promoting data interoperability and data availability for reuse, which is the ultimate goal of this initiative. Consequently, we have successfully ensured FAIR data for understanding plant-pollinator interactions at biologically-relevant scales for crops, with broad participation from initiatives in Europe, South America, Africa, North America, and elsewhere. We have also established concrete guidelines on FAIR data best practices customised for pollination data, metadata, and other digital objects, promoting the scalable adoption of these standards and FAIR data best practices by multiple initiatives. We believe this effort can assist similar initiatives in adopting interoperability standards for this domain and contribute to our understanding of how plant-pollinator interactions contribute to sustain life on Earth. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393. 

    Recommendations for interoperability among infrastructures

    Get PDF
    The BiCIKL project is born from a vision that biodiversity data are most useful if they are presented as a network of data that can be integrated and viewed from different starting points. BiCIKL’s goal is to realise that vision by linking biodiversity data infrastructures, particularly for literature, molecular sequences, specimens, nomenclature and analytics. To make those links we need to better understand the existing infrastructures, their limitations, the nature of the data they hold, the services they provide and particularly how they can interoperate. In light of those aims, in the autumn of 2021, 74 people from the biodiversity data community engaged in a total of twelve hackathon topics with the aim to assess the current state of interoperability between infrastructures holding biodiversity data. These topics examined interoperability from several angles. Some were research subjects that required interoperability to get results, some examined modalities of access and the use and implementation of standards, while others tested technologies and workflows to improve linkage of different data types.These topics and the issues in regard to interoperability uncovered by the hackathon participants inspired the formulation of the following recommendations for infrastructures related to (1) the use of data brokers, (2) building communities and trust, (3) cloud computing as a collaborative tool, (4) standards and (5) multiple modalities of access:If direct linking cannot be supported between infrastructures, explore using data brokers to store linksCooperate with open linkage brokers to provide a simple way to allow two-way links between infrastructures, without having to co-organize between many different organisationsFacilitate and encourage the external reporting of issues related to their infrastructure and its interoperability.Facilitate and encourage requests for new features related to their infrastructure and its interoperability.Provide development roadmaps openlyProvide a mechanism for anyone to ask for helpDiscuss issues in an open forumProvide cloud-based environments to allow external participants to contribute and test changes to featuresConsider the opportunities that cloud computing brings as a means to enable shared management of the infrastructure.Promote the sharing of knowledge around big data technologies amongst partners, using cloud computing as a training environmentInvest in standards compliance and work with standards organisations to develop new, and extend existing standardsReport on and review standards compliance within an infrastructure with metrics that give credit for work on standard compliance and developmentProvide as many different modalities of access as possibleAvoid requiring personal contacts to download dataProvide a full description of an API and the data it servesFinally, the hackathons were an ideal meeting opportunity to build, diversify and extend the BiCIKL community further, and to ensure the alignment of the community with a common vision on how best to link data from specimens, samples, sequences, taxonomic names and taxonomic literature

    The ubiquity of beauty-is-good in media: Understanding the importance of appearance in adolescents’ lives

    No full text
    For decades now, scholars have called attention to the possible consequences of adolescents' immersion in an appearance culture that glorifies and reinforces physical attractiveness. This concern for adolescents' development is partly triggered by mass and social media's idealization of multiple aspects of life by presenting them in a reinforcing and rewarding setting. Not surprisingly, then, prior research has often used the claim that rewards might instigate certain media effects. Despite scholars' extensive effort to study the association between the appearance culture and adolescents' body image investment, however, our understanding of how the idealization of physical attractiveness fits into this association remains limited. Therefore, the current dissertation studies, for the first time, whether the reward value of appearance ideals might serve as the leitmotif of adolescents' investment in appearance ideals. In addition, a review of the literature points at adolescents' active investment in their appearance as another issue that remains understudied. Following the lacunas in the literature, the current dissertation aims to contribute to a more nuanced understanding of the association between sociocultural factors and youth's (behavioral) body image investment. In doing so, we found that the literature reveals multiple theoretical perspectives but a lack of overarching theoretical principles to explain all the observed effects. In an attempt to integrate the multiple theoretical perspectives that exist in body image literature, we searched for transferrable constructs. This search culminated in an innovative perspective that (1) includes the reward value of appearance ideals as a trigger of the cognitive acceptance and integration of ideals into adolescents' self-concept and (2) considers both cognitive and behavioral aspects of body image investment. In addition, the current dissertation aims to take into account the multidimensionality of contemporary appearance ideals that are embedded in a sexualizing culture that adolescents can become invested in. To address these research aims, two studies were conducted. First, preadolescent girls and boys (aged 9 to 14 years) filled out paper-and-pencil questionnaires at three different time points. This design allowed us to conduct cross-sectional and longitudinal analyses. Second, a multi-method study was conducted whereby adolescents (aged 12 to 18 years) filled out a paper-and-pencil questionnaire and their Facebook profile pictures were content-analyzed. This design allowed us to conduct cross-sectional analyses and provided a more objective measure of behavioral body image investment. The main conclusion that can be drawn from the current dissertation's findings is that sociocultural factors influence (appearance) behavior if individuals have cognitively accepted and internalized the learned appearance ideals into their self-image. It is this internal influence (personal attitudes and values towards appearance) that affects behavior. Importantly, this cognitive processing of appearance information and incorporation of appearance ideals into adolescents' body image - not behavior - was found to be triggered by their perception of attractiveness as rewarded. As such, the contribution of the current dissertation lies in revealing an internalized socialization process; adolescents first become aware of the prevailing appearance standards in society through the interactions within the appearance culture (i.e., socialization). Next, their socialization into the prevailing appearance norms is cognitively accepted and internalized as an aspect of their self-image which, in turn, affects their behavioral body image investment. A second conclusion refers to the multidimensionality of contemporary appearance ideals. Specifically, the literature indicates that appearance ideals in contemporary society are not only focused on body composition (thinness/muscularity) but consist of multiple features that are increasingly centered around sexual attractiveness. The findings of the current dissertation are in line with this reasoning. Specifically, we found that although body composition remains an important aspect of the ideal appearance, exercising for a good physique was accompanied with hair styling and wearing short (girls) and tight (boys) clothing as most prevalent appearance behaviors among adolescents. As such, we conclude adolescents' active (i.e., behavioral) participation in a sexualizing culture by engaging in behaviors to comply with sexualizing appearance ideals. Lastly, the findings demonstrate that adolescents' investment - both cognitively and behaviorally - in their body image most likely stems from peer rather than mediated encounters with the multidimensional and sexualized ideal. Furthermore, the findings also point at the interrelatedness of peers and media, thereby corroborating prior claims that peer interactions are a particularly strong source of information by providing self-relevant information, but that media exposure might fuel what is discussed among peers. Specifically, if having a sexualized appearance is approved of and rewarded by peers, adolescents will be more likely to internalize these standards and engage in behaviors to approximate the sexualized ideal. Therefore, it is concluded that exposure to appearance ideals in media can influence adolescents, once they learn how peers appraise the ideal.status: publishe
    • 

    corecore