358 research outputs found
Family Tensions and Information Privacy: A Barrier to Diffusion of Proximity Tracing Applications?
Technology played a central role during the pandemic for communications and services. It was also touted as a potential solution to control the spread of COVID-19 via proximity tracing applications, also known as contact tracing (CT) apps worldwide. In non-mandated settings, however, these apps did not attain popularity. Privacy concerns were highlighted as one reason. We explored how family perceptions of CT apps can affect the family’s use of such apps. We surveyed parent-teen dyads twice over a 5-month period. We analyzed parent-teen perceptions of each other’s intentions and use of CT apps at time 1 and 2, exploring changes over time. Parents’ use intentions were influenced by their and their teens’ perceptions of the benefits but not privacy concerns. Teen intentions were influenced by their own perceptions of benefits, not their parent’s, and their parent’s concerns for the family. Intentions always influenced usage, including intentions at time 1 influencing use at time 2, demonstrating a longitudinal effect of intentions on usage existed for parents and teens
Recommended from our members
Ammonia Emissions in the United States, European Union, and China Derived by High-Resolution Inversion of Ammonium Wet Deposition Data: Interpretation with a New Agricultural Emissions Inventory (MASAGE_NH3)
We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to optimize ammonia emissions in the U.S., European Union, and China by inversion of 2005–2008 network data for wet deposition fluxes. Optimized emissions are derived on a 2° × 2.5° grid for individual months and years. Error characterization in the optimization includes model errors in precipitation. Annual optimized emissions are for the contiguous U.S., for the European Union, and for China. Comparisons to previous inventories for the U.S. and European Union show consistency in annual totals but some large spatial and seasonal differences. We develop a new global bottom-up inventory of emissions (Magnitude And Seasonality of Agricultural Emissions model for NH3 (MASAGE_NH3)) to interpret the results of the adjoint optimization. MASAGE_NH3 provides information on the magnitude and seasonality of emissions from individual crop and livestock sources on a 0.5° × 0.5° grid. We find that U.S. emissions peak in the spring in the Midwest due to corn fertilization and in the summer elsewhere due to manure. The seasonality of European emissions is more homogeneous with a well-defined maximum in spring associated with manure and mineral fertilizer application. There is some evidence for the effect of European regulations of emissions, notably a large fall decrease in northern Europe. Emissions in China peak in summer because of the summertime application of fertilizer for double cropping.Engineering and Applied Science
New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System
We used the Magellan adaptive optics (MagAO) system and its VisAO CCD camera
to image the young low mass brown dwarf companion CT Chamaeleontis B for the
first time at visible wavelengths. We detect it at r', i', z', and Ys. With our
new photometry and Teff~2500 K derived from the shape its K-band spectrum, we
find that CT Cha B has Av = 3.4+/-1.1 mag, and a mass of 14-24 Mj according to
the DUSTY evolutionary tracks and its 1-5 Myr age. The overluminosity of our r'
detection indicates that the companion has significant Halpha emission and a
mass accretion rate ~6*10^-10 Msun/yr, similar to some substellar companions.
Proper motion analysis shows that another point source within 2" of CT Cha A is
not physical. This paper demonstrates how visible wavelength AO photometry (r',
i', z', Ys) allows for a better estimate of extinction, luminosity, and mass
accretion rate of young substellar companions.Comment: Accepted for publication in ApJ; 6 figure
New Extinction and Mass Estimates of the Low-mass Companion 1RXS 1609 B with the Magellan AO System: Evidence of an Inclined Dust Disk
We used the Magellan adaptive optics system to image the 11 Myr substellar
companion 1RXS 1609 B at the bluest wavelengths to date (z' and Ys). Comparison
with synthetic spectra yields a higher temperature than previous studies of
and significant dust extinction of
mag. Mass estimates based on the DUSTY tracks gives
0.012-0.015 Msun, making the companion likely a low-mass brown dwarf surrounded
by a dusty disk. Our study suggests that 1RXS 1609 B is one of the 25% of Upper
Scorpius low-mass members harboring disks, and it may have formed like a star
and not a planet out at 320 AU.Comment: 5 pages, 4 figures; accepted to ApJ
Acute effects of a thermogenic nutritional supplement on cycling time to exhaustion and muscular strength in college-aged men
<p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance.</p> <p>Methods</p> <p>Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO<sub>2 PEAK </sub>= 3.05 ± 0.59 L/min<sup>-1</sup>) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO<sub>2 PEAK </sub>(Parvo Medics TrueOne<sup>® </sup>2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO<sub>2 PEAK </sub>followed by 1-RM LP and BP tests.</p> <p>Results</p> <p>There were no differences (<it>p </it>> 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (<it>p </it>≤ 0.05).</p> <p>Conclusion</p> <p>Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation.</p
Acute effects of a thermogenic nutritional supplement on cycling time to exhaustion and muscular strength in college-aged men
This is the publisher's version, also available electronically from http://www.jissn.com/content/6/1/15.The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance.
Methods
Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO2 PEAK = 3.05 ± 0.59 L/min-1) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO2 PEAK (Parvo Medics TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO2 PEAK followed by 1-RM LP and BP tests.
Results
There were no differences (p > 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (p ≤ 0.05).
Conclusion
Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation
Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions
Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications
Why do models overestimate surface ozone in the Southeast United States
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer
Disrupting the allosteric interaction between the plasmodium falciparumcAMP-dependent kinase and its regulatory subunit
The ubiquitous second messenger cAMP mediates signal transduction processes in the malarial parasite that regulate host erythrocyte invasion and the proliferation of merozoites. In Plasmodium falciparum, the central receptor for cAMP is the single regulatory subunit (R) of protein kinase A (PKA). To aid the development of compounds that can selectively dysregulate parasite PKA signaling, we solved the structure of the PKA regulatory subunit in complex with cAMP and a related analogue that displays antimalarial activity, (Sp)-2-Cl-cAMPS. Prior to signaling, PKA-R holds the kinase's catalytic subunit (C) in an inactive state by exerting an allosteric inhibitory effect. When two cAMP molecules bind to PKA-R, they stabilize a structural conformation that facilitates its dissociation, freeing PKA-C to phosphorylate downstream substrates such as apical membrane antigen 1. Although PKA activity was known to be necessary for erythrocytic proliferation, we show that uncontrolled induction of PKA activity using membrane-permeable agonists is equally disruptive to growth
- …