50 research outputs found

    Size-Controlled Water-Soluble Ag Nanoparticles

    Get PDF
    Ag nanoparticles of two different sizes (1 and 4 nm) were prepared within an apoferritin cavity by using an Ag+-loaded apoferritin as a nanoconfined environment for their construction. The initial amount of Ag' ions injected in the apoferritin cavity dictates the size of the final Ag particles. The protein shell prevents bulk aggregation of the metal particles, which renders them water soluble and extremely stable

    La calificación del infarto como accidente de trabajo en el Régimen General de Seguridad Social

    Get PDF
    Investigación sobre la calificación del infarto como accidente de trabajo según la Ley General de la Seguridad Social, así como el análisis exhaustivo de la calificación de la misma según los pronunciamientos judiciales

    Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template

    Get PDF
    A novel and simple transcription strategy has been designed for the template-synthesis of CePO4 xH2O nanofibers having an improved nanofibrous morphology using a pH-sensitive nanofibrous hydrogel (glycine-alanine lipodipeptide) as structure-directing scaffold. The phosphorylated hydrogel was employed as a template to direct the mineralization of high aspect ratio nanofibrous cerium phosphate, which in-situ formed by diffusion of aqueous CeCl3 and subsequent drying (60 C) and annealing treatments (250, 600 and 900 C). Dried xerogels and annealed CePO4 powders were characterized by conventional thermal and thermogravimetric analysis (DTA/TG), and Wide-Angle X-ray powder diffraction (WAXD) and X-ray powder diffraction (XRD) techniques. A molecular packing model for the formation of the fibrous xerogel template was proposed, in accordance with results from Fourier-Transformed Infrarred (FTIR) and WAXD measurements. The morphology, crystalline structure and composition of CePO4 nanofibers were characterized by electron microscopy techniques (Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy/High-Resolution Transmission Electron Microscopy (TEM/HRTEM), and Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field (STEM-HAADF)) with associated X-ray energy-dispersive detector (EDS) and Scanning Transmission Electron Microscopy-Electron Energy Loss (STEM-EELS) spectroscopies. Noteworthy, this templating approach successfully led to the formation of CePO4 H2O nanofibrous bundles of rather co-aligned and elongated nanofibers (10–20 nm thick and up to ca. 1 m long). The formed nanofibers consisted of hexagonal (P6222) CePO4 nanocrystals (at 60 and 250 C), with a better-grown and more homogeneous fibrous morphology with respect to a reference CePO4 prepared under similar (non-templated) conditions, and transformed into nanofibrous monoclinic monazite (P21/n) around 600 C. The nanofibrous morphology was highly preserved after annealing at 900 C under N2, although collapsed under air conditions. The nanofibrous CePO4 (as-prepared hexagonal and 900 C-annealed monoclinic) exhibited an enhanced UV photo-luminescent emission with respect to non-fibrous homologues

    Efficient Alkyne Semihydrogenation Catalysis Enabled by Synergistic Chemical and Thermal Modifications of a PdIn MOF

    Get PDF
    [EN] Recently, there has been a growing interest in using MOF templating to synthesize heterogeneous catalysts based on metal nanoparticles on carbonaceous supports. Unlike the common approach of direct pyrolysis of PdIn-MOFs at high temperatures, this work proposes a reductive chemical treatment under mild conditions before pyrolysis (resulting in PdIn-QT). The resulting material (PdIn-QT) underwent comprehensive characterization via state-of-the-art aberration-corrected electron microscopy, N2 physisorption, X-ray absorption spectroscopy, Raman, X-ray photoelectron spectroscopy, and X-ray diffraction. These analyses have proven the existence of PdIn bimetallic nanoparticles supported on N-doped carbon. In situ DRIFT spectroscopy reveals the advantageous role of indium (In) in regulating Pd activity in alkyne semihydrogenation. Notably, incorporating a soft nucleation step before pyrolysis enhances surface area, porosity, and nitrogen content compared to direct MOF pyrolysis. The optimized material exhibits outstanding catalytic performance with 96% phenylacetylene conversion and 96% selectivity to phenylethylene in the fifth cycle under mild conditions (5 mmol phenylacetylene, 7 mg cat, 5 mL EtOH, R.T., 1 H2 bar).The authors thank the financial support from the Spanish Government (RTI2018-096399-A-I00, PID2022-140111OB-I00, PID2020-113006-RB-I00, TED2021-130191B-C41, and TED2021-130191B-C44) funded by MCIN/AEI/10.13039/501100011033. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022507 and NextGenerationEU/PRTR). HR-STEM studies were performed at the DME-UCA node of the ELECMI Spanish Unique Infrastructure (ICTS) for Electron Microscopy of Materials. Some of these experiments were performed at CLAESS and NOTOS beamlines at ALBA Synchrotron with the collaboration of ALBA staff (Carlos Escudero, Carlo Marini). J.M. Salas is acknowledged for experimental contributions to FTIR measurements.Martínez, JS.; Mazarío, J.; Wittee Lopes, C.; Trasobares, S.; Calvino Gamez, JJ.; Agostini, G.; Oña-Burgos, P. (2024). Efficient Alkyne Semihydrogenation Catalysis Enabled by Synergistic Chemical and Thermal Modifications of a PdIn MOF. ACS Catalysis. 14(7):4768-4785. https://doi.org/10.1021/acscatal.4c003104768478514

    In-Depth Structural and Optical Analysis of Ce-modified ZnO Nanopowders with Enhanced Photocatalytic Activity Prepared by Microwave-Assisted Hydrothermal Method

    Get PDF
    Pure and Ce-modified ZnO nanosheet-like polycrystalline samples were successfully synthesized by a simple and fast microwave-based process and tested as photocatalytic materials in environmental remediation processes. In an attempt to clarify the actual relationships between functionality and atomic scale structure, an in-depth characterization study of these materials using a battery of complementary techniques was performed. X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-Ray spectroscopy-scanning transmission electron microscopy (STEM-XEDS), photoluminescence spectroscopy (PL) and UV-Visible absorption spectroscopy were used to evaluate the effect of Ce ions on the structural, morphological, optical and photocatalytic properties of the prepared ZnO nanostructures. The XRD results showed that the obtained photocatalysts were composed of hexagonal, wurtzite type crystallites in the 34-44 nm size range. The SEM and TEM showed nanosheet-shaped crystallites, a significant fraction of them in contact with bundles of randomly oriented and much smaller nanoparticles of a mixed cerium-zinc phase with a composition close to Ce0.68Zn0.32Ox. Importantly, in clear contrast to the prevailing proposals regarding this type of materials, the STEM-XEDS characterization of the photocatalyst samples revealed that Ce did not incorporate into the ZnO crystal lattice as a dopant but that a heterojunction formed between the ZnO nanosheets and the Ce-Zn mixed oxide phase nanoparticles instead. These two relevant compositional features could in fact be established thanks to the particular morphology obtained by the use of the microwave-assisted hydrothermal synthesis. The optical study revealed that in the ZnO:Ce samples optical band gap was found to decrease to 3.17 eV in the samples with the highest Ce content. It was also found that the ZnO:Ce (2 at.%) sample exhibited the highest photocatalytic activity for the degradation of methylene blue (MB), when compared to both the pure ZnO and commercial TiO2-P25 under simulated sunlight irradiation. The kinetics of MB photodegradation in the presence of the different photocatalysts could be properly described using a Langmuir-Hinshelwood (LH) model, for which the ZnO:Ce (2 at.%) sample exhibited the highest value of effective kinetic constant

    Understanding the potential-induced activation of a cobalt MOF electrocatalyst for the oxygen evolution reaction

    Get PDF
    Metal–organic frameworks (MOFs) are attractive porous materials for electrocatalytic applications associated with carbon-free energy storage and conversion. This type of material usually requires a post-treatment to be used as electrocatalyst. The present work comprehensively investigates the electrochemical activation of a cobalt-MOF@Nafion composite that produces outstanding electrocatalytic performance for the water oxidation reaction at neutral pH. A detailed electrochemical characterization reveals that the electroactivation of the composite requires the participation of the oxygen evolution reaction (OER) and leads to a significant increase in the electroactive population of cobalt centers. It is shown that an increase of the applied activation potential in the OER region results in a faster electroactivation of the Co-MOF without affecting the intrinsic electrocatalytic properties of the active cobalt centers, as evidenced by the unique linear correlation between the electrocatalytic OER current and the population of electroactive cobalt. In addition, at structural level, it is shown that the electrochemical activation causes the partial disruption of the Nafion adlayer, as well as morphological changes of the Co–MOF particles from a compact, rounded morphology, before electrochemical activation, to a more open and expanded structure, after electroactivation; with the concomitant increase of the number of surface–exposed cobalt centers. Interestingly, these cobalt centers retain their coordinative chemistry and their laminar distribution in the nanosheets at the nanoscale, which is consistent with the preservation of their intrinsic electrocatalytic activity after potential–induced activation. In this scenario, these results suggest that only the electroactivated cobalt centers with good accessibility to the electrolyte are electrochemically active. This work provides a better understanding of the processes and structural changes underlying the electrochemical activation at neutral pH of a Co–MOF for boosting the electrocatalytic water oxidation reaction9 página

    Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles

    Get PDF
    This work was funded by the Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) through the projects PID2019- 111461GB-I00 to N.G. and J.M.DV, and PGC2018-096016-B-I00 to LG.). S.T. and J.J.C. acknowledge funding from the European Union’s Horizon 2020 research and innovation program under Grant 823717−ESTEEM3. A.G. acknowledges Junta de Andalucía for the postdoctoral contract within the PAIDI 2020 program (DOC_00791). Y.FA. thanks Santander-Universidad Zaragoza Fellowship program for her PhD position. J.M.D.L. acknowledges the financial support by the Spanish MCIN/AEI /10.13039/501100011033 through the project NanoSmart (RYC-2016-21042)Probiotic bacteria were used as carriers of metallic nanoparticles to develop innovative oral agents for hyperthermia cancer therapy. Two synthetic strategies were used to produce the different therapeutic agents. First, the probiotic bacterium Lactobacillus fermentum was simultaneously loaded with magnetic (MNPs) and gold nanoparticles (AuNPs) of different morphologies to produce AuNP+MNP-bacteria systems with both types of nanoparticles arranged in the same layer of bacterial exopolysaccharides (EPS). In the second approach, the probiotic was first loaded with AuNP to form AuNP-bacteria and subsequently loaded with MNP-EPS to yield AuNP-bacteria-EPS-MNP with the MNP and AuNP arranged in two different EPS layers. This second strategy has never been reported and exploits the presence of EPS–EPS recognition which allows the layer-by-layer formation of structures on the bacteria external wall. The AuNP+MNP-bacteria and AuNP-bacteria-EPS-MNP samples were characterized by scanning (SEM) and transmission electron microscopy (TEM), and UV-vis spectroscopy. The potential of these two heterobimetallic systems as magnetic hyperthermia or photothermal therapy agents was assessed, validating their capacity to produce heat either during exposure to an alternating magnetic field or a near-infrared laser light. The probiotic Lactobacillus fermentum has already been proposed as an oral drug carrier, able to overcome the stomach medium and deliver drugs to the intestines, and it is actually marketed as an oral supplement to reinforce the gut microbiota, thus, our results open the way for the development of novel therapeutic strategies using these new heterobimetallic AuNP/MNP-bacteria systems in the frame of gastric diseases, using them, for example, as oral agents for cancer treatment with magnetic hyperthermia and photothermal therapy.Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) through the project PID2019- 111461GB-I00Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) through the project PGC2018-096016-B-I00European Union’s Horizon 2020 research and innovation program under Grant 823717−ESTEEM3PAIDI 2020 program (DOC_00791)Spanish MCIN/AEI /10.13039/501100011033 through the project NanoSmart (RYC-2016-21042

    Encapsulation of Cynara Cardunculus Guaiane-type Lactones in Fully Organic Nanotubes Enhances Their Phytotoxic Properties

    Get PDF
    The encapsulation of bioactive natural products has emerged as a relevant tool for modifying the poor physicochemical properties often exhibited by agrochemicals. In this regard, natural guaiane-type sesquiterpene lactones isolated from Cynara cardunculus L. have been encapsulated in a core/shell nanotube(c)agrochemical system. Monitoring of the F and O signals in marked sesquiterpenes confirmed that the compound is present in the nanotube cavity. These structures were characterized using scanning transmission electron microscopy-X-ray energy-dispersive spectrometry techniques, which revealed the spatial layout relationship and confirmed encapsulation of the sesquiterpene lactone derivative. In addition, biological studies were performed with aguerin B (1), cynaropicrin (2), and grosheimin (3) on the inhibition of germination, roots, and shoots in weeds (Phalaris arundinacea L., Lolium perenne L., and Portulaca oleracea L.). Encapsulation of lactones in nanotubes gives better results than those for the nonencapsulated compounds, thereby reinforcing the application of fully organic nanotubes for the sustainable use of agrochemicals in the future.This research was funded by the Agencia Estatal de Investigacion, Ministerio de Ciencia e Innovacion, grant number PID2020-115747RB-I00/AEI/10.13039/501100011033, Spain. F. J.R.M thanks the University of Cadiz for postdoctoral support under grant 2018-009/PU/EPIF-FPI-CT/CP. Furthermore, this work has received financial support from the Junta de Andalucia (FQM334), MINECO/FEDER (projects MAT2017-87579-R). This project has received funding from the European Union's Horizon 2020 research and innovation program under grant 823717-ESTEEM3. STEM studies were performed at the DME Facilities of SCCYT at the University of Cadiz. We also thank Semillas Fito (Barcelona, Spain) for kindly supplying us with wheat seeds

    SYNTHESE ET CARACTERISATION DE NOUVELLES STRUCTURES DE CARBONE ET D'AZOTE (COUCHES MINCES ET NANOTUBES)

    No full text
    ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
    corecore