1,014 research outputs found

    A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing

    Get PDF
    Acid-sensitive K+ channels of the tandem P-domain K+-channel family (TASK-1 and TASK-3) have been implicated in peripheral and central respiratory chemosensitivity; however, because of the lack of decisive pharmacological agents, the final proof of the role of the TASK channel in the chemosensory control of breathing has been missing. In the mouse, TASK-1 and TASK-3 channels are dispensable for central respiratory chemosensitivity (Mulkey et al., 2007Go). Here, we have used knock-out animals to determine whether TASK-1 and TASK-3 channels play a role in the carotid body function and chemosensory control of breathing exerted by the carotid body chemoreceptors. Ventilatory responses to hypoxia (10% O2 in inspired air) and moderate normoxic hypercapnia (3–6% CO2 in inspired air) were significantly reduced in TASK-1 knock-out mice. In contrast, TASK-3-deficient mice showed responses to both stimuli that were similar to those developed by their wild-type counterparts. TASK-1 channel deficiency resulted in a marked reduction of the hypoxia (by 49%)- and CO2 (by 68%)-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid body/carotid sinus nerve preparations. Deficiency in both TASK-1 and TASK-3 channels increased baseline chemoafferent activity but did not cause a further reduction of the carotid body chemosensory responses. These observations provide direct evidence that TASK-1 channels contribute significantly to the increases in the carotid body chemoafferent discharge in response to a decrease in arterial PO2 or an increase in PCO2/[H+]. TASK-1 channels therefore play a key role in the control of ventilation by peripheral chemoreceptors

    Using multiple environmental tracers to investigate the relative role of soil and deep groundwater in stream water generation for a snow-dominated headwater catchment

    Get PDF
    In this study, seasonal fluctuation of environmental tracers in stream flow, soil water, and deep bedrock groundwater were used to constrain the role of deep bedrock groundwater in streamflow generation for a mountainous headwater catchment. Synoptic measurements of stream discharge, 222Rn, specific conductivity and major ion concentrations were measured throughout the water year over a 5 km reach of Cap Wallace Creek in the Lubrecht Experimental Forest, Montana, U.S.A. with the intention of understanding groundwater – surface water interactions across spatial and temporal scales. Stage measurements were continually recorded at seven stilling well locations along the reach. Discharge measurements and water samples were taken at these sites throughout the winter, spring, summer, and fall of 2017. Shallow soil and groundwater water level and environmental tracer concentrations from contributing hillslopes were also measured. Dissolved 222Rn was used to calculate total subsurface discharge. Multi-component mixing models of major ion chemistry and stream discharge were used to constrain end-member discharge to the stream. Mixing model results were compared to landscape characteristics to identify internal catchment controls on the heterogeneity and duration of subsurface discharge. 222Rn modeling suggests that streamflow is dominantly generated by subsurface discharge. End-member mixing analysis indicates that streamflow was partitioned between soil water and groundwater end-members. On average, groundwater comprised 38% of streamflow at the outlet but fluctuated between 26% in the spring and 44% in the early summer. Spatial analyses showed elevation and upslope accumulated area (UAA) to be first-order controls on end-member discharge. Groundwater became a more important component to streamflow at higher catchment scales with lower elevations and higher UAA values, suggesting topography-driven flow. Correlations among landscape and end-member discharge were strong across variable states of catchment ‘wetness,’ indicating that accumulated elevation and catchment area are robust predictors of groundwater discharge across the landscape (r2 = 0.52-0.98). These results have implications for understanding the processes controlling seasonal watershed streamflow response to snowmelt and for predicting headwater response to changing climatic conditions

    Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    Get PDF
    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system

    Reconstructing 3D x-ray CT images of polymer gel dosimeters using the zero-scan method

    Get PDF
    In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels

    Molecular interconversion behaviour in comprehensive two-dimensional gas chromatography

    Get PDF
    Comprehensive two-dimensional gas chromatography (GC x GC) is shown to provide information on dynamic molecular behaviour (interconversion), with the interconversion process occurring on both columns in the coupled-column experiment. The experiment requires suitable adjustment of both experimental conditions and relative dimensions of each of the columns. In this case, a longer column than normally employed in GC x GC allows sufficient retention duration on the second column, which permits the typical plateau-shape recognised for the interconversion process to be observed. The extent of interconversion depends on prevailing temperature, retention time, and the phase type. Polyethylene glycol-based phases were found to result in high interconversion kinetics, although terephthalic acid-terminated polyethylene glycol had a lesser extent of interconversion. Much less interconversion was seen for phenyl-methylpolysiloxane and cyclodextrin phases. This suggests that for the oximes, interconversion largely occurs in the stationary phase. Examples of different extents of interconversion in both dimensions are shown, including peak coalescence on the first column with little interconversion on the second column
    corecore