100 research outputs found
Anterior Segment-Optical Coherence Tomography features in Blau syndrome.
Blau syndrome (BS) is a rare granulomatous auto-inflammatory disease, characterized by the classic clinical triad of joints, skin and ocular involvements. Ocular manifestation usually consists in a bilateral insidious chronic anterior uveitis with a potential evolution to panuveitis. We describe the case of two siblings, an 8-years old female and a 5-years old male, with a diagnosis of BS, evaluated by Anterior Segment-Optical Coherence Tomography (AS-OCT). In the female patient, slit-lamp examination revealed bilateral anterior granulomatous uveitis and inflammatory sequelae. AS-OCT revealed high intensity reflective layers in the anterior cornea, hyperreflective dots both in the aqueous humor and in the posterior corneal surface. In the male, no signs of inflammation were detected both on slit-lamp examination and AS-OCT scans. AS-OCT is a valuable, non-invasive tool that could improve the diagnosis of ocular involvement, better characterize and follow-up corneal alterations and anterior segment features in pediatric patients with BS
Walk your talk: Real-world adherence to guidelines on the use of MRI in multiple sclerosis
(1) Although guidelines about the use of MRI sequences for Multiple Sclerosis (MS) diagnosis and follow-up are available, variability in acquisition protocols is not uncommon in everyday clinical practice. The aim of this study was to evaluate the real-world application of MS imaging guidelines in different settings to clarify the level of adherence to these guidelines. (2) Via an on-line anonymous survey, neuroradiologists (NR) were asked about MRI protocols and parameters routinely acquired when MS patients are evaluated in their center, both at diagnosis and followup. Furthermore, data about report content and personal opinions about emerging neuroimaging markers were also retrieved. (3) A total of 46 participants were included, mostly working in a hospital or university hospital (80.4%) and with more than 10 years of experience (47.9%). We found a relatively good adherence to the suggested MRI protocols regarding the use of T2-weighted sequences, although almost 10% of the participants routinely acquired 2D sequences with a slice thickness superior to 3 mm. On the other hand, a wider degree of heterogeneity was found regarding gadolinium administration, almost routinely performed at follow-up examination (87.0% of cases) in contrast with the current guidelines, as well as a low use of a standardized reporting system (17.4% of cases). (4) Although the MS community is getting closer to a standardization of MRI protocols, there is still a relatively wide heterogeneity among NR, with particular reference to contrast administration, which must be overcome to guarantee an adequate quality of patientsâ care in MS
Walk your talk: Real-world adherence to guidelines on the use of MRI in multiple sclerosis
(1) Although guidelines about the use of MRI sequences for Multiple Sclerosis (MS) diagnosis and follow-up are available, variability in acquisition protocols is not uncommon in everyday clinical practice. The aim of this study was to evaluate the real-world application of MS imaging guidelines in different settings to clarify the level of adherence to these guidelines. (2) Via an on-line anonymous survey, neuroradiologists (NR) were asked about MRI protocols and parameters routinely acquired when MS patients are evaluated in their center, both at diagnosis and followup. Furthermore, data about report content and personal opinions about emerging neuroimaging markers were also retrieved. (3) A total of 46 participants were included, mostly working in a hospital or university hospital (80.4%) and with more than 10 years of experience (47.9%). We found a relatively good adherence to the suggested MRI protocols regarding the use of T2-weighted sequences, although almost 10% of the participants routinely acquired 2D sequences with a slice thickness superior to 3 mm. On the other hand, a wider degree of heterogeneity was found regarding gadolinium administration, almost routinely performed at follow-up examination (87.0% of cases) in contrast with the current guidelines, as well as a low use of a standardized reporting system (17.4% of cases). (4) Although the MS community is getting closer to a standardization of MRI protocols, there is still a relatively wide heterogeneity among NR, with particular reference to contrast administration, which must be overcome to guarantee an adequate quality of patients' care in MS
Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure
OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-Δ4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults.METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9â±â7.2âyears, 376 females) with baseline cerebrospinal fluid samples of amyloid ÎČ 1-42 and p-Tau 181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up timeâ= 1.3â±â0.5 years) were obtained in a subset (nâ=â223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-Δ4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-Δ4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect.INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.</p
Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal âtrajectoryâ of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors
Recommended from our members
Two neurostructural subtypes: results of machine learning on brain images from 4,291 individuals with schizophrenia
Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors
- âŠ