42,481 research outputs found
Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release
A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds
A continuum-microscopic method based on IRBFs and control volume scheme for viscoelastic fluid flows
A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the solution. The proposed method is demonstrated with the solution of the start-up Couette flow of the Hookean and FENE dumbbell model fluids
Choosing the best model in the presence of zero trade: a fish product analysis
The purpose of the paper is to test the hypothesis that food safety (chemical) standards act as barriers to international seafood imports. We use zero-accounting gravity models to test the hypothesis that food safety (chemical) standards act as barriers to international seafood imports. The chemical standards on which we focus include chloramphenicol required performance limit, oxytetracycline maximum residue limit, fluoro-quinolones maximum residue limit, and dichlorodiphenyltrichloroethane (DDT) pesticide residue limit. The study focuses on the three most important seafood markets: the European Union’s 15 members, Japan, and North America
Recyclable Synthesis, Characterization, and Antimicrobial Activity of Chitosan-based Polysaccharide Composite Materials
We have successfully developed a simple and totally recyclable method to synthesize novel, biocompatible, and biodegradable composite materials from cellulose (CEL) and chitosan (CS). In this method, [BMIm+Cl−], an ionic liquid (IL), was used as a green solvent to dissolve and synthesize the [CEL+CS] composites. Since, the IL can be removed from the composites by washing them with water, and recovered by distilling the washed solution, the method is totally recyclable. Spectroscopic and imaging techniques including XRD, FTIR, NIR, and SEM were used to monitor the dissolution, to characterize and to confirm that CEL and CS were successfully regenerated. More importantly, we have successfully demonstrated that [CEL+CS] composite is particularly suited for many applications including antimicrobial property. This is because the composites have combined advantages of their components, namely superior chemical and mechanical stability (from CEL) and bactericide (from CS). Results of tensile strength measurements clearly indicate that adding CEL into CS substantially increase its tensile strength. Up to 5× increase in tensile strength can be achieved by adding 80% of CEL into CS. Results of in vitro antibacterial assays confirm that CS retains its antibacterial property in the composite. More importantly, the composites reported here can inhibit growth of wider range of bacteria than other CS-based materials prepared by conventional methods; that is over 24 h period, the composites substantially inhibited growth of bacteria such as MRSA, VRE, S. aureus, E. coli. These are bacteria that are often found to have the highest morbidity and mortality associated with wound infections. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013
- …
