5,922 research outputs found
Reduced O diffusion through Be doped Pt electrodes
Using first principles electronic structure calculations we screen nine
elements for their potential to retard oxygen diffusion through
poly-crystalline Pt (p-Pt) films. We determine that O diffuses preferentially
as interstitial along Pt grain boundaries (GBs). The calculated barriers are
compatible with experimental estimates. We find that Be controls O diffusion
through p-Pt. Beryllium segregates to Pt GBs at interstitial (i) and
substitutional (s) sites. i-Be is slightly less mobile than O and it repels O,
thus stuffing the GB. s-Be has a high diffusion barrier and it forms strong
bonds to O, trapping O in the GB. Experiments confirm our theoretical
predictions.Comment: 3 pages, 2 figure
Generalization of the Poisson kernel to the superconducting random-matrix ensembles
We calculate the distribution of the scattering matrix at the Fermi level for
chaotic normal-superconducting systems for the case of arbitrary coupling of
the scattering region to the scattering channels. The derivation is based on
the assumption of uniformly distributed scattering matrices at ideal coupling,
which holds in the absence of a gap in the quasiparticle excitation spectrum.
The resulting distribution generalizes the Poisson kernel to the nonstandard
symmetry classes introduced by Altland and Zirnbauer. We show that unlike the
Poisson kernel, our result cannot be obtained by combining the maximum entropy
principle with the analyticity-ergodicity constraint. As a simple application,
we calculate the distribution of the conductance for a single-channel chaotic
Andreev quantum dot in a magnetic field.Comment: 7 pages, 2 figure
Recommended from our members
The Role of Compensation in Nicotine Reduction.
The available research on switching from normal nicotine to very low nicotine content cigarettes shows minimal evidence of compensatory smoking. Mathematical estimations suggest that substantial compensation after switching to very low nicotine cigarettes would be impossible. It is likely that smokers who are unable to tolerate the extent of proposed nicotine reduction would switch to other sources of nicotine, rather than try to compensate by smoking more very low nicotine content cigarettes more intensely
Two ways to solve ASEP
The purpose of this article is to describe the two approaches to compute
exact formulas (which are amenable to asymptotic analysis) for the probability
distribution of the current of particles past a given site in the asymmetric
simple exclusion process (ASEP) with step initial data. The first approach is
via a variant of the coordinate Bethe ansatz and was developed in work of Tracy
and Widom in 2008-2009, while the second approach is via a rigorous version of
the replica trick and was developed in work of Borodin, Sasamoto and the author
in 2012.Comment: 10 pages, Chapter in "Topics in percolative and disordered systems
Characteristic polynomials of random matrices at edge singularities
We have discussed earlier the correlation functions of the random variables
\det(\la-X) in which is a random matrix. In particular the moments of the
distribution of these random variables are universal functions, when measured
in the appropriate units of the level spacing. When the \la's, instead of
belonging to the bulk of the spectrum, approach the edge, a cross-over takes
place to an Airy or to a Bessel problem, and we consider here these modified
classes of universality.
Furthermore, when an external matrix source is added to the probability
distribution of , various new phenomenons may occur and one can tune the
spectrum of this source matrix to new critical points. Again there are
remarkably simple formulae for arbitrary source matrices, which allow us to
compute the moments of the characteristic polynomials in these cases as well.Comment: 22 pages, late
Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE Revisited
We derive expansions of the resolvent
Rn(x;y;t)=(Qn(x;t)Pn(y;t)-Qn(y;t)Pn(x;t))/(x-y) of the Hermite kernel Kn at the
edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the
finite n expansion of Qn(x;t) and Pn(x;t). Using these large n expansions, we
give another proof of the derivation of an Edgeworth type theorem for the
largest eigenvalue distribution function of GUEn. We conclude with a brief
discussion on the derivation of the probability distribution function of the
corresponding largest eigenvalue in the Gaussian Orthogonal Ensemble (GOEn) and
Gaussian Symplectic Ensembles (GSEn)
The Spitzer c2d Survey of Nearby Dense Cores. IX. Discovery of a Very Low Luminosity Object Driving a Molecular Outflow in the Dense Core L673-7
We present new infrared, submillimeter, and millimeter observations of the
dense core L673-7 and report the discovery of a low-luminosity, embedded Class
0 protostar driving a molecular outflow. L673-7 is seen in absorption against
the mid-infrared background in 5.8, 8, and 24 micron Spitzer images, allowing
for a derivation of the column density profile and total enclosed mass of
L673-7, independent of dust temperature assumptions. Estimates of the core mass
from these absorption profiles range from 0.2-4.5 solar masses. Millimeter
continuum emission indicates a mass of about 2 solar masses, both from a direct
calculation assuming isothermal dust and from dust radiative transfer models
constrained by the millimeter observations. We use dust radiative transfer
models to constrain the internal luminosity of L673-7, defined to be the
luminosity of the central source and excluding the luminosity from external
heating, to be 0.01-0.045 solar luminosities, with 0.04 solar luminosities the
most likely value. L673-7 is thus classified as a very low luminosity object
(VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate
the kinematic and dynamic properties of the molecular outflow in the standard
manner, and we show that the expected accretion luminosity based on these
outflow properties is greater than or equal to 0.36 solar luminosities. The
discrepancy between this expected accretion luminosity and the internal
luminosity derived from dust radiative transfer models indicates that the
current accretion rate is much lower than the average rate over the lifetime of
the outflow. Although the protostar embedded within L673-7 is consistent with
currently being substellar, it is unlikely to remain as such given the
substantial mass reservoir remaining in the core.Comment: 19 pages, 14 figures. Accepted by Ap
The weight-inclusive vs. weight-normative approach to health: Evaluating the evidence for prioritizing well-being over weight
Using an ethical lens, this review evaluates two methods of working within patient care and public health: the weight-normative approach (emphasis on weight and weight loss when defining health and well-being) and the weight-inclusive approach (emphasis on viewing health and well-being as multifaceted while directing efforts toward improving health access and reducing weight stigma). Data reveal that the weight-normative approach is not effective for most people because of high rates of weight regain and cycling from weight loss interventions, which are linked to adverse health and well-being. Its predominant focus on weight may also foster stigma in health care and society, and data show that weight stigma is also linked to adverse health and well-being. In contrast, data support a weight-inclusive approach, which is included in models such as Health at Every Size for improving physical (e.g., blood pressure), behavioral (e.g., binge eating), and psychological (e.g., depression) indices, as well as acceptability of public health messages. Therefore, the weight-inclusive approach upholds nonmaleficience and beneficience, whereas the weight-normative approach does not. We offer a theoretical framework that organizes the research included in this review and discuss how it can guide research efforts and help health professionals intervene with their patients and community
Random matrices: Universality of local eigenvalue statistics up to the edge
This is a continuation of our earlier paper on the universality of the
eigenvalues of Wigner random matrices. The main new results of this paper are
an extension of the results in that paper from the bulk of the spectrum up to
the edge. In particular, we prove a variant of the universality results of
Soshnikov for the largest eigenvalues, assuming moment conditions rather than
symmetry conditions. The main new technical observation is that there is a
significant bias in the Cauchy interlacing law near the edge of the spectrum
which allows one to continue ensuring the delocalization of eigenvectors.Comment: 24 pages, no figures, to appear, Comm. Math. Phys. One new reference
adde
Universal singularity at the closure of a gap in a random matrix theory
We consider a Hamiltonian , in which is a given
non-random Hermitian matrix,and is an Hermitian random matrix
with a Gaussian probability distribution.We had shown before that Dyson's
universality of the short-range correlations between energy levels holds at
generic points of the spectrum independently of . We consider here the
case in which the spectrum of is such that there is a gap in the
average density of eigenvalues of which is thus split into two pieces. When
the spectrum of is tuned so that the gap closes, a new class of
universality appears for the energy correlations in the vicinity of this
singular point.Comment: 20pages, Revtex, to be published in Phys. Rev.
- …