11 research outputs found

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Climatic growing conditions of Jatropha curcas L.

    No full text
    The massive investment in new jatropha plantations worldwide is not sufficiently based on a profound scientific knowledge of its ecology. In this article, we define the climatic conditions in its area of natural distribution by combining the locations of herbarium specimens with corresponding climatic information, and compare these conditions with those in 83 jatropha plantations worldwide. Most specimens (87%) were found in tropical savannah and monsoon climates (Am, Aw) and in temperate climates without dry season and with hot summer (Cfa), while very few were found in semi-arid (BS) and none in arid climates (BW). Ninety-five percent of the specimens grew in areas with a mean annual rainfall above 944 mm year-1 and an average minimum temperature of the coldest month (Tmin) above 10.5 °C. The mean annual temperature range was 19.3-27.2 °C. The climatic conditions at the plantations were different from those of the natural distribution specimens for all studied climatic variables, except average maximum temperature in the warmest month. Roughly 40% of the plantations were situated in regions with a drier climate than in 95% of the area of the herbarium specimens, and 28% of the plantations were situated in areas with Tmin below 10.5 °C. The observed precipitation preferences indicate that jatropha is not common in regions with arid and semi-arid climates. Plantations in arid and semi-arid areas hold the risk of low productivity or irrigation requirement. Plantations in regions with frost risk hold the risk of damage due to frost. © 2009 Elsevier Ltd. All rights reserved.info:eu-repo/semantics/publishe

    Can Jatropha fuel a CO2-lean society?

    No full text
    info:eu-repo/semantics/nonPublishe

    Land suitability for Jatropha biofuel production

    No full text
    info:eu-repo/semantics/nonPublishe

    Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands - Lessons learned from Jatropha

    No full text
    Biofuels are considered as a climate-friendly energy alternative. However, their environmental sustainability is increasingly debated because of land competition with food production, negative carbon balances and impacts on biodiversity. Arid and semi-arid lands have been proposed as a more sustainable alternative without such impacts. In that context this paper evaluates the carbon balance of potential land conversion to Jatropha cultivation, biofuel production and use in arid and semi-arid areas. This evaluation includes the calculation of carbon debt created by these land conversions and calculation of the minimum Jatropha yield necessary to repay the respective carbon debts within 15 or 30 years. The carbon debts caused by conversion of arid and semi-arid lands to Jatropha vary largely as a function of the biomass carbon stocks of the land use types in these regions. Based on global ecosystem carbon mapping, cultivated lands and marginal areas (sparse shrubs, herbaceous and bare areas) show to have similar biomass carbon stocks (on average 4-8 t C ha -1) and together cover a total of 1.79 billion ha. Conversion of these lands might not cause a carbon debt, but still might have a negative impact on other sustainability dimensions (e.g. biodiversity or socio-economics). Jatropha establishment in shrubland (0.75 billion ha) would cause a carbon debt of 24-28 t C ha -1 on average (repayable within 30 year with yield of 3.5-3.9 t seed ha -1 yr -1). Land use change in the 1.15 billion ha of forested area under arid and semi-arid climates could cause a carbon debt between 70 and 118 t C ha -1. This debt requires 8.6-13.9 t seed production ha -1 yr -1 for repayment within 30 years. If repayment is required within 15 years, the necessary minimum yields almost double. Considering that 5 t seed ha -1 yr -1 is the current maximum Jatropha yield, conversion of forests cannot be repaid within one human generation. Repayment of carbon debt from shrubland conversions in 30 years is challenging, but feasible. Repayment in 15 year is currently not attainable. Based on this analysis the paper discusses the carbon mitigation potential of biofuels in arid and semi-arid environments. © 2012 Elsevier Ltd. All rights reserved.info:eu-repo/semantics/publishe

    Towards domestication of Jatropha curcas

    No full text
    Jatropha curcas L. attracts a lot of interest as a biofuel crop, triggering large investments and rapid expansion of cultivation areas, and yet, it should still be considered as a (semi-)wild, undomesticated plant. To use the full potential of Jatropha and to support further expansion and systematic selection, breeding and domestication are a prerequisite. This review reveals and identifies gaps in knowledge that still impede domestication of Jatropha. Prebreeding knowledge is limited. In particular, the regeneration ecology and the degree of genetic diversity among and within natural populations in and outside the center of origin are poorly studied. There is only a limited understanding of the Jatropha breeding system and the effect of inbreeding and outbreeding. This review presents all currently available and relevant information on the species distribution, site requirements, regeneration ecology, genetic diversity, advances in selection, development of varieties and hybridization. It also describes possible routes to a better Jatropha germplasm, gives recommendations for tackling current problems and provides guidance for future research. We also discuss the participatory domestication strategy of Jatropha integration in agroforestry. © 2010 Future Science Ltd.info:eu-repo/semantics/publishe
    corecore