15 research outputs found

    The EVN view of the highly variable TeV active galaxy IC 310

    Full text link
    Very-high-energy γ\gamma-ray observations of the active galaxy IC 310 with the MAGIC telescopes have revealed fast variability with doubling time scales of less than 4.8min. This implies that the emission region in IC 310 is smaller than 20% of the gravitational radius of the central supermassive black hole with a mass of 3×108M⊙3\times 10^8 M_\odot, which poses serious questions on the emission mechanism and classification of this enigmatic object. We report on the first quasi-simultaneous multi-frequency VLBI observations of IC 310 conducted with the EVN. We find a blazar-like one-sided core-jet structure on parsec scales, constraining the inclination angle to be less than ∼20∘\sim 20^\circ but very small angles are excluded to limit the de-projected length of the large-scale radio jet.Comment: 4 pages, proceedings of the 12th European VLBI Network Symposium and Users Meeting - EVN 2014, 7-10 October 2014, Cagliari, Italy. Published online in PoS, ID.10

    TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet

    Get PDF
    Context. Centaurus A (Cen A) is the closest radio-loud active galactic nucleus. Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet¿counterjet system on milliarcsecond scales, providing essential information for jet emission and propagation models. Aims. In the framework of the TANAMI monitoring, we investigate the kinematics and complex structure of Cen A on subparsec scales. We have been studying the evolution of the central parsec jet structure of Cen A for over 3.5 years. The proper motion analysis of individual jet components allows us to constrain jet formation and propagation and to test the proposed correlation of increased high-energy flux with jet ejection events. Cen A is an exceptional laboratory for such a detailed study because its proximity translates to unrivaled linear resolution, where one milliarcsecond corresponds to 0.018 pc. Methods. As a target of the southern-hemisphere VLBI monitoring program TANAMI, observations of Cen A are done approximately every six months at 8.4 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, New Zealand, and South Africa, complemented by quasi-simultaneous 22.3 GHz observations. Results. The first seven epochs of high-resolution TANAMI VLBI observations at 8.4 GHz of Cen A are presented, resolving the jet on (sub-)milliarcsecond scales. They show a differential motion of the subparsec scale jet with significantly higher component speeds farther downstream where the jet becomes optically thin. We determined apparent component speeds within a range of 0.1c to 0.3c and identified long-term stable features. In combination with the jet-to-counterjet ratio, we can constrain the angle to the line of sight to theta approx 12deg-45deg. Conclusions. The high-resolution kinematics are best explained by a spine-sheath structure supported by the downstream acceleration occurring where the jet becomes optically thin. On top of the underlying, continuous flow, TANAMI observations clearly resolve individual jet features. The flow appears to be interrupted by an obstacle causing a local decrease in surface brightness and circumfluent jet behavior. We propose a jet-star interaction scenario to explain this appearance. The comparison of jet ejection times to high X-ray flux phases yields a partial overlap of the onset of the X-ray emission and increasing jet activity, but the limited data do not support a robust correlation

    TANAMI blazars in the IceCube PeV-neutrino fields

    Get PDF
    The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Owing to the steeply falling atmospheric background spectrum, events at PeV energies most likely have an extraterrestrial origin. We present the multiwavelength properties of the six radio-brightest blazars that are positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to γ-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is high enough to explain the two detected PeV events

    The unusual multiwavelength properties of the gamma-ray source PMNJ1603−4904

    Get PDF
    Context. We investigate the nature and classification of PMNJ1603−4904, a bright radio source close to the Galactic plane, which is associated with one of the brightest hard-spectrum gamma-ray sources detected by Fermi/LAT. It has previously been classified as a low-peaked BL Lac object based on its broadband emission and the absence of optical emission lines. Optical measurements, however, suffer strongly from extinction and the absence of pronounced short-time ga,,a-ray variability over years of monitoring is unusual for a blazar. Aims. In this paper, we are combining new and archival multiwavelength data of PMNJ1603−4904 in order to reconsider the classification and nature of this unusual gamma-ray source. Methods. For the first time, we study the radio morphology of PMNJ1603−4904 at 8.4GHz and 22.3GHz, and its spectral properties on milliarcsecond scales, based on VLBI observations from the TANAMI program. We combine the resulting images with multiwavelength data in the radio, IR, optical/UV, X-ray, and gamma-ray regimes. Results. PMNJ1603−4904 shows a symmetric brightness distribution at 8.4GHz on milliarcsecond scales, with the brightest, and most compact component in the center of the emission region. The morphology is reminiscent of a Compact Symmetric Object (CSO). Such objects, thought to be young radio galaxies, have been predicted to produce gamma-ray emission but have not been detected as a class by the Fermi gamma-ray telescope so far. Sparse (u,v)-coverage at 22.3GHz prevents an unambiguous modeling of the source morphology at this higher frequency. Moreover, infrared measurements reveal an excess in the spectral energy distribution (SED), which can be modeled with a blackbody with a temperature of about 1600K, and which is usually not present in blazar SEDs. Conclusions. The TANAMI VLBI data and the shape of the broadband SED challenge the current blazar classification of one of the brightest gamma-ray sources in the sky. PMNJ1603−4904 seems to be either a highly peculiar BL Lac object or a misaligned jet source. In the latter case, the intriguing VLBI structure opens room for a possible classification of PMNJ1603−4904 as a gamma-ray bright CSO

    The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447. I. The X-ray View

    Get PDF
    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004−447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004−447 are in the range of (0.5−2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band

    The LOFAR Multifrequency Snapshot Sky Survey (MSSS). I. Survey description and first results

    Get PDF

    ANTARES constrains a blazar origin of two IceCube PeV neutrino events

    Get PDF
    Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons ¿ and hence their neutrino progenitors ¿ from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results. Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653−329 and 1714−336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than −2.4

    TANAMI: Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry - II. Additional Sources

    Get PDF
    TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of -30deg declination including high-resolution Very Long Baseline Interferometry (VLBI) imaging, radio, optical/UV, X-ray and gamma-ray studies. We have previously published first-epoch 8.4GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and gamma-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (>100TeV) neutrino events have been found. We characterize the parsec-scale radio properties of the jets and compare with the quasi-simultaneous Fermi/LAT gamma-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events as compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Our observations yield the first images of many jets below -30deg declination at milliarcsecond resolution. We find that gamma-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than gamma-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 gamma-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the >100TeV IceCube signal is not simply dominated by a small number of the γ\gamma-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in multi-year integrations of current neutrino detectors
    corecore