451 research outputs found

    Quasi-optimal robust stabilization of control systems

    Full text link
    In this paper, we investigate the problem of semi-global minimal time robust stabilization of analytic control systems with controls entering linearly, by means of a hybrid state feedback law. It is shown that, in the absence of minimal time singular trajectories, the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator noise

    On the stabilization problem for nonholonomic distributions

    Get PDF
    Let MM be a smooth connected and complete manifold of dimension nn, and Δ\Delta be a smooth nonholonomic distribution of rank m≀nm\leq n on MM. We prove that, if there exists a smooth Riemannian metric on Δ\Delta for which no nontrivial singular path is minimizing, then there exists a smooth repulsive stabilizing section of Δ\Delta on MM. Moreover, in dimension three, the assumption of the absence of singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based on the study, using specific results of nonsmooth analysis, of an optimal control problem of Bolza type, for which we prove that the corresponding value function is semiconcave and is a viscosity solution of a Hamilton-Jacobi equation, and establish fine properties of optimal trajectories.Comment: accept\'e pour publication dans J. Eur. Math. Soc. (2007), \`a para\^itre, 29 page

    Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays

    Get PDF
    We consider the celebrated Cucker-Smale model in finite dimension, modelling interacting collective dynamics and their possible evolution to consensus. The objective of this paper is to study the effect of time delays in the general model. By a Lyapunov functional approach, we provide convergence results to consensus for symmetric as well as nonsymmetric communication weights under some structural conditions

    The turnpike property in finite-dimensional nonlinear optimal control

    Get PDF
    Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory
    • 

    corecore