27 research outputs found
Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies
Understanding the factors influencing vaccination campaign effectiveness is vital in designing efficient disease elimination programmes. We investigated the importance of spatial heterogeneity in vaccination coverage and human-mediated dog movements for the elimination of endemic canine rabies by mass dog vaccination in Region VI of the Philippines (Western Visayas). Household survey data was used to parameterise a spatially-explicit rabies transmission model with realistic dog movement and vaccination coverage scenarios, assuming a basic reproduction number for rabies drawn from the literature. This showed that heterogeneous vaccination reduces elimination prospects relative to homogeneous vaccination at the same overall level. Had the three vaccination campaigns completed in Region VI in 2010–2012 been homogeneous, they would have eliminated rabies with high probability. However, given the observed heterogeneity, three further campaigns may be required to achieve elimination with probability 0.95. We recommend that heterogeneity be reduced in future campaigns through targeted efforts in low coverage areas, even at the expense of reduced coverage in previously high coverage areas. Reported human-mediated dog movements did not reduce elimination probability, so expending limited resources on restricting dog movements is unnecessary in this endemic setting. Enhanced surveillance will be necessary post-elimination, however, given the reintroduction risk from long-distance dog movements
Comparing methods of assessing dog rabies vaccination coverage in rural and urban communities in Tanzania
Rabies can be eliminated by achieving comprehensive coverage of 70% of domestic dogs during annual mass vaccination campaigns. Estimates of vaccination coverage are, therefore, required to evaluate and manage mass dog vaccination programs; however, there is no specific guidance for the most accurate and efficient methods for estimating coverage in different settings. Here, we compare post-vaccination transects, school-based surveys, and household surveys across 28 districts in southeast Tanzania and Pemba island covering rural, urban, coastal and inland settings, and a range of different livelihoods and religious backgrounds. These approaches were explored in detail in a single district in northwest Tanzania (Serengeti), where their performance was compared with a complete dog population census that also recorded dog vaccination status. Post-vaccination transects involved counting marked (vaccinated) and unmarked (unvaccinated) dogs immediately after campaigns in 2,155 villages (24,721 dogs counted). School-based surveys were administered to 8,587 primary school pupils each representing a unique household, in 119 randomly selected schools approximately 2 months after campaigns. Household surveys were conducted in 160 randomly selected villages (4,488 households) in July/August 2011. Costs to implement these coverage assessments were 66.12, and $155.70 per village for post-vaccination transects, school-based, and household surveys, respectively. Simulations were performed to assess the effect of sampling on the precision of coverage estimation. The sampling effort required to obtain reasonably precise estimates of coverage from household surveys is generally very high and probably prohibitively expensive for routine monitoring across large areas, particularly in communities with high human to dog ratios. School-based surveys partially overcame sampling constraints, however, were also costly to obtain reasonably precise estimates of coverage. Post-vaccination transects provided precise and timely estimates of community-level coverage that could be used to troubleshoot the performance of campaigns across large areas. However, transects typically overestimated coverage by around 10%, which therefore needs consideration when evaluating the impacts of campaigns. We discuss the advantages and disadvantages of these different methods and make recommendations for how vaccination campaigns can be better monitored and managed at different stages of rabies control and elimination programs
Surveillance guidelines for disease elimination: a case study of canine rabies
Surveillance is a critical component of disease control programmes but is often poorly resourced, particularly in developing countries lacking good infrastructure and especially for zoonoses which require combined veterinary and medical capacity and collaboration. Here we examine how successful control, and ultimately disease elimination, depends on effective surveillance. We estimated that detection probabilities of <0.1 are broadly typical of rabies surveillance in endemic countries and areas without a history of rabies. Using outbreak simulation techniques we investigated how the probability of detection affects outbreak spread, and outcomes of response strategies such as time to control an outbreak, probability of elimination, and the certainty of declaring freedom from disease. Assuming realistically poor surveillance (probability of detection <0.1), we show that proactive mass dog vaccination is much more effective at controlling rabies and no more costly than campaigns that vaccinate in response to case detection. Control through proactive vaccination followed by 2 years of continuous monitoring and vaccination should be sufficient to guarantee elimination from an isolated area not subject to repeat introductions. We recommend that rabies control programmes ought to be able to maintain surveillance levels that detect at least 5% (and ideally 10%) of all cases to improve their prospects of eliminating rabies, and this can be achieved through greater intersectoral collaboration. Our approach illustrates how surveillance is critical for the control and elimination of diseases such as canine rabies and can provide minimum surveillance requirements and technical guidance for elimination programmes under a broad-range of circumstances
Designing programs for eliminating canine rabies from islands: Bali, Indonesia as a case study
<p>Background:
Canine rabies is one of the most important and feared zoonotic diseases in the world. In some regions rabies elimination is being successfully coordinated, whereas in others rabies is endemic and continues to spread to uninfected areas. As epidemics emerge, both accepted and contentious control methods are used, as questions remain over the most effective strategy to eliminate rabies. The Indonesian island of Bali was rabies-free until 2008 when an epidemic in domestic dogs began, resulting in the deaths of over 100 people. Here we analyze data from the epidemic and compare the effectiveness of control methods at eliminating rabies.</p>
<p>Methodology/Principal Findings:
Using data from Bali, we estimated the basic reproductive number, R0, of rabies in dogs, to be ~1·2, almost identical to that obtained in ten–fold less dense dog populations and suggesting rabies will not be effectively controlled by reducing dog density. We then developed a model to compare options for mass dog vaccination. Comprehensive high coverage was the single most important factor for achieving elimination, with omission of even small areas (<0.5% of the dog population) jeopardizing success. Parameterizing the model with data from the 2010 and 2011 vaccination campaigns, we show that a comprehensive high coverage campaign in 2012 would likely result in elimination, saving ~550 human lives and ~$15 million in prophylaxis costs over the next ten years.</p>
<p>Conclusions/Significance:
The elimination of rabies from Bali will not be achieved through achievable reductions in dog density. To ensure elimination, concerted high coverage, repeated, mass dog vaccination campaigns are necessary and the cooperation of all regions of the island is critical. Momentum is building towards development of a strategy for the global elimination of canine rabies, and this study offers valuable new insights about the dynamics and control of this disease, with immediate practical relevance.</p>
The ACCESS study a Zelen randomised controlled trial of a treatment package including problem solving therapy compared to treatment as usual in people who present to hospital after self-harm: study protocol for a randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>People who present to hospital after intentionally harming themselves pose a common and important problem. Previous reviews of interventions have been inconclusive as existing trials have been under powered and done on unrepresentative populations. These reviews have however indicated that problem solving therapy and regular written communications after the self-harm attempt may be an effective treatment. This protocol describes a large pragmatic trial of a package of measures which include problem solving therapy, regular written communication, patient support, cultural assessment, improved access to primary care and a risk management strategy in people who present to hospital after self-harm using a novel design.</p> <p>Methods</p> <p>We propose to use a double consent Zelen design where participants are randomised prior to giving consent to enrol a large representative cohort of patients. The main outcome will be hospital attendance following repetition of self-harm, in the 12 months after recruitment with secondary outcomes of self reported self-harm, hopelessness, anxiety, depression, quality of life, social function and hospital use at three months and one year.</p> <p>Discussion</p> <p>A strength of the study is that it is a pragmatic trial which aims to recruit large numbers and does not exclude people if English is not their first language. A potential limitation is the analysis of the results which is complex and may underestimate any effect if a large number of people refuse their consent in the group randomised to problem solving therapy as they will effectively cross over to the treatment as usual group. However the primary analysis is a true intention to treat analysis of everyone randomised which includes both those who consent and do not consent to participate in the study. This provides information about how the intervention will work in practice in a representative population which is a major advance in this study compared to what has been done before.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12609000641291.aspx">ACTRN12609000641291</a></p
Characterizing Prostate Cancer Risk Through Multi-Ancestry Genome-Wide Discovery of 187 Novel Risk Variants
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups
Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions
Background:
Dogs are ubiquitous in human society and attempts to manage their populations are common to most countries. Managing dog populations is achieved through a range of interventions to suit the dog population dynamics and dog ownership characteristics of the location, with a number of potential impacts or goals in mind. Impact assessment provides the opportunity for interventions to identify areas of inefficiencies for improvement and build evidence of positive change.
Methods:
This scoping review collates 26 studies that have assessed the impacts of dog population management interventions.
Results:
It reports the use of 29 indicators of change under 8 categories of impact and describes variation in the methods used to measure these indicators.
Conclusion:
The relatively few published examples of impact assessment in dog population management suggest this field is in its infancy; however this review highlights those notable exceptions. By describing those indicators and methods of measurement that have been reported thus far, and apparent barriers to efficient assessment, this review aims to support and direct future impact assessment
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Can parasites drive population cycles in mountain hares?
Understanding the drivers of population fluctuations is a central goal of ecology. Although well-established theory suggests that parasites can drive cyclic population fluctuations in their hosts, field evidence is lacking. Theory predicts that a parasite that loosely aggregates in the host population and has stronger impact on host fecundity than survival should induce cycling. The helminth Trichostrongylus retortaeformis in the UK's only native lagomorph, the mountain hare, has exactly these properties, and the hares exhibit strong population fluctuations. Here we use a host–parasite model parametrized using the available empirical data to test this superficial concordance between theory and observation. In fact, through an innovative combination of sensitivity and stability analyses, we show that hare population cycles do not seem to be driven by the parasite. Potential limitations in our parametrization and model formulation, together with the possible secondary roles for parasites in determining hare demography, are discussed. Improving our knowledge of leveret biology and the quantification of harvesting emerge as future research priorities. With the growing concern over the present management of mountain hares for disease control in Scotland, understanding their population drivers is an important prerequisite for the effective management of this species