111 research outputs found
Stress-induced decreases in local cerebral glucose utilization in specific regions of the mouse brain
BACKGROUND: Restraint stress in rodents has been reported to activate the hypothalamic-pituitary-adrenocortical (HPA) axis and to increase c-fos expression in regions that express components of the corticotropin-releasing factor (CRF) system. We have previously reported that acute central administration of CRF increased a measure of relative local cerebral glucose utilization (LCGU), a measure of neuronal activity in specific brain regions, and activated the HPA axis in mice. It was hypothesized that the involvement of the CRF system in the stress response would lead to similar changes in relative LCGU after restraint stress. In the present studies the effect of restraint stress on relative LCGU and on the HPA axis in C57BL/6N mice were examined. FINDINGS: Restraint stress activated the HPA axis in a restraint-duration dependent manner, but in contrast to the reported effects of CRF, significantly decreased relative LCGU in frontal cortical, thalamic, hippocampal and temporal dissected regions. These findings support evidence that stressors enforcing limited physical activity reduce relative LCGU, in contrast to high activity stressors such as swim stress. CONCLUSIONS: In conclusion, the present studies do not support the hypothesis that stress-induced changes in relative LCGU are largely mediated by the CRF system. Further studies will help to delineate the role of the CRF system in the early phases of the relative LCGU response to stress and investigate the role of other neurotransmitter systems in this response
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system
BACKGROUND: Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. METHODS: Baboons were randomized into a breastfed (B) and four formula-fed groups: term, no DHA/ARA (T-); term, DHA/ARA supplemented (T+); preterm, no DHA/ARA (P-); preterm and DHA/ARA supplemented (P+). At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. RESULTS: DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. CONCLUSION: 1) DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2) DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3) supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA
Concentration-Dependent, Size-Independent Toxicity of Citrate Capped AuNPs in Drosophila melanogaster
The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size
SNP-SNP interactions in breast cancer susceptibility
BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management
Mitophagy plays a central role in mitochondrial ageing
The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing
Mutational processes contributing to the development of multiple myeloma.
To gain insight into multiple myeloma (MM) tumorigenesis, we analyzed the mutational signatures in 874 whole-exome and 850 whole-genome data from the CoMMpass Study. We identified that coding and non-coding regions are differentially dominated by distinct single-nucleotide variant (SNV) mutational signatures, as well as five de novo structural rearrangement signatures. Mutational signatures reflective of different principle mutational processes-aging, defective DNA repair, and apolipoprotein B editing complex (APOBEC)/activation-induced deaminase activity-characterize MM. These mutational signatures show evidence of subgroup specificity-APOBEC-attributed signatures associated with MAF translocation t(14;16) and t(14;20) MM; potentially DNA repair deficiency with t(11;14) and t(4;14); and aging with hyperdiploidy. Mutational signatures beyond that associated with APOBEC are independent of established prognostic markers and appear to have relevance to predicting high-risk MM
- …