5 research outputs found

    Interactions entre bactéries et champignons endophytes d'algues brunes : implication du quorum sensing dans la communication chimique

    No full text
    Les macroalgues hĂ©bergent de nombreux micro-organismes, collectivement dĂ©signĂ©s sous le terme de microbiote algal, qui ont un rĂŽle essentiel dans le dĂ©veloppement et l’état de santĂ© de leur hĂŽte. Dans ce travail, nous avons explorĂ© le microbiote fongique et bactĂ©rien d’algues brunes, ainsi que l’impact des interactions bactĂ©rie-champignon sur la mĂ©diation chimique et, en particulier, sur le quorum sensing bactĂ©rien. Par des approches de metabarcoding ciblant l’ADNr 16S et l’ITS2, nous avons montrĂ© que les communautĂ©s fongiques et bactĂ©riennes associĂ©es Ă  la macroalgue brune Saccharina latissima Ă©taient trĂšs riches, principalement composĂ©es de quelques OTUs dominants, et d’une grande abondance d’OTUs « rares ». De maniĂšre intĂ©ressante, les communautĂ©s fongiques comme bactĂ©riennes diffĂ©raient de celles de l’eau de mer environnante et paraissaient spĂ©cifiques des tissus algaux. Cependant, de grandes variations intra et interindividuelles de composition ont Ă©tĂ© observĂ©es au sein des Ă©chantillons de tissus d’algue. Ainsi, ce qui dĂ©finit la spĂ©cificitĂ© des communautĂ©s microbiennes reste Ă  prĂ©ciser. En parallĂšle, nous avons explorĂ© la mĂ©diation chimique au sein de l’endomicrobiote de quatre algues brunes : Saccharina latissima, Laminaria digitata, Pelvetia canaliculata et Ascophylum nodosum, et rĂ©vĂ©lĂ© que de nombreux endophytes fongiques et bactĂ©riens isolĂ©s synthĂ©tisaient des mĂ©tabolites interfĂ©rant avec les systĂšmes de quorum sensing bactĂ©riens, en les induisant ou les inhibant. De plus, les bioessais basĂ©s sur les biosenseurs, couplĂ©s Ă  une approche mĂ©tabolomique, effectuĂ©s sur les co-cultures, ont mis en Ă©vidence en quoi les interactions bactĂ©ries-champignons au sein de l’endomicrobiote d’algues brunes pouvaient affecter la production de mĂ©diateurs chimiques, et notamment de molĂ©cules interfĂ©rant avec le quorum sensing bactĂ©rien. Ensemble, ces rĂ©sultats suggĂšrent que le quorum sensing pourrait jouer un rĂŽle clĂ© dans le rĂ©seau complexe d’interactions au sein du microbiote algal, et ainsi dans l’équilibre hĂŽte-microbiote.Macroalgae host various microorganisms, collectively referred as the algal microbiota, which play an essential role in the development and health status of their host. In this work, we explored the bacterial and fungal microbiota of brown algae, as well as the impact of bacterial fungal interactions on the chemical mediation and, in particular, on the bacterial quorum sensing. Using 16S rDNA-based and ITS2-based metabarcoding approaches we showed that the fungal and bacterial communities associated with the brown macroalgae Saccharina latissima were very rich, mainly composed of few dominant OTUs, and a large abundance of “rare” OTUs. Interestingly, both fungal and bacterial communities differed from the ones of the surrounding seawater and appeared specific to the algal tissues. However, high intra and interindividual variations of composition were observed among the algal tissue samples. Thus what define the specificity of the microbial communities remains to be clarified. In parallel, we explored the chemical mediation within the cultivable endomicrobiota of four brown algae: Saccharina latissima, Laminaria digitata, Pelvetia canaliculata and Ascophylum nodosum, and pointed out that many of the isolated bacterial and fungal endophytes could synthetize metabolites interfering with bacterial quorum sensing systems, either inducing or inhibiting them. Additionally, biosensor-based bioassays coupled with metabolomics approaches performed on co-culture experiments, highlighted how bacterial-fungal interactions within the endomicrobiota of brown algae could affect the production of chemical mediators, including those interfering with bacterial quorum sensing. Altogether, the results suggest that the quorum sensing could play a key role in the complex network of interactions within the algal microbiota, and thus in the host-microbiota equilibrium

    Bacterial–Fungal Interactions in the Kelp Endomicrobiota Drive Autoinducer-2 Quorum Sensing

    No full text
    International audienceBrown macroalgae are an essential component of temperate coastal ecosystems and a growing economic sector. They harbor diverse microbial communities that regulate algal development and health. This algal holobiont is dynamic and achieves equilibrium via a complex network of microbial and host interactions. We now report that bacterial and fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated in virulence and host colonization. Additionally, we performed co-culture experiments combined to a metabolomic approach and demonstrated that microbial interactions influence production of metabolites, including metabolites involved in quorum sensing. Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the complex network of interactions within the algal holobiont

    Novel α-Hydroxy γ-Butenolides of Kelp Endophytes Disrupt Bacterial Cell-to-Cell Signaling

    No full text
    International audienceA wide range of microbial symbionts such as bacteria and fungi colonize the tissues of macrophytes. The chemical interactions between these endophytes remain underexplored. The obligate marine fungus Paradendryphiella salina was isolated from several healthy brown macrophyte species. Novel α-hydroxy γ-butenolides produced by P. salina were purified and characterized by nuclear magnetic resonance (NMR). These compounds interfere with the bacterial quorum sensing system as shown in bioassays with pathogenic bacterial model Pseudomonas aeruginosa. Ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS)-based comparative metabolomics revealed the presence of the main α-hydroxy γ-butenolides among all the P. salina strains isolated from different hosts as well as a high metabolic variability related to the alga-host species. Collectively, these findings highlight the key role of microbial chemical signaling that may occur within the algal holobiont
    corecore