15 research outputs found

    Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits

    Get PDF
    The V1V2 region of HIV-1 gp120 harbors a major vulnerable site targeted by a group of broadly neutralizing monoclonal antibodies (MAbs) such as PG9 through strand-strand recognition. However, this epitope region is structurally polymorphic as it can also form a helical conformation recognized by RV144 vaccine-induced MAb CH58. This structural polymorphism is a potential mechanism for masking the V1V2 vulnerable site. Designing immunogens that can induce conformation-specific antibody (Ab) responses may lead to vaccines targeting this vulnerable site. We designed a panel of immunogens engrafting the V1V2 domain into trimeric and pentameric scaffolds in structurally constrained conformations. We also fused V1V2 to an Fc fragment to mimic the unconstrained V1V2 conformation. We tested these V1V2-scaffold proteins for immunogenicity in rabbits and assessed the responses by enzyme-linked immunosorbent assay (ELISA) and competition assays. Our V1V2 immunogens induced distinct conformation-specific Ab responses. Abs induced by structurally unconstrained immunogens reacted preferentially with unconstrained V1V2 antigens, suggesting recognition of the helical configuration, while Abs induced by the structurally constrained immunogens reacted preferentially with constrained V1V2 antigens, suggesting recognition of the beta-strand conformation. The Ab responses induced by the structurally constrained immunogens were more broadly reactive and had higher titers than those induced by the structurally unconstrained immunogens. Our results demonstrate that immunogens presenting the different structural conformations of the gp120 V1V2 vulnerable site can be designed and that these immunogens induce distinct Ab responses with epitope conformation specificity. Therefore, these structurally constrained V1V2 immunogens are vaccine prototypes targeting the V1V2 domain of the HIV-1 envelope. IMPORTANCE: The correlates analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the V1V2 region of HIV-1 gp120 was responsible for the modest protection observed in the trial. In addition, V1V2 harbors one of the key vulnerable sites of HIV-1 Env recognized by a family of broadly neutralizing MAbs such as PG9. Thus, V1V2 is a key target for vaccine development. However, this vulnerable site is structurally polymorphic, and designing immunogens that present different conformations is crucial for targeting this site. We show here that such immunogens can be designed and that they induced conformation-specific antibody responses in rabbits. Our immunogens are therefore prototypes of vaccine candidates targeting the V1V2 region of HIV-1 Env

    Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response

    Get PDF
    Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope (Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian immunodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only transient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals, and (iv) remained detectable \u3e /=1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold immunogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaffold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally designed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and SHIV. IMPORTANCE: Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly cross-reactive with the V1V2 regions of HIV subtypes B, C and E and, importantly, facilitated Fc-mediated phagocytosis, an activity not induced upon immunization of rabbits with gp120. This is the first immunogenicity study of vaccine constructs that focuses the antibody response on V1V2 and induces V2-specific antibodies with the ability to mediate phagocytosis, an activity that has been associated with protection from infection with HIV, SIV, and SHIV

    RTCNN Performance (CASF 2016 pose rank benchmark)

    No full text
    RTCNN Score is a Neural Network Score. RTCNN is a Radial Convolutional Neural Net including layers that do Topological (chemical graph) convolutions and 3D Radial convolutions. The RTCNN score is different from the regular ICM Score (see above) - it does not use any molecular mechanics or physical energy terms. Instead, the score is trained to recognize native-like complexes versus decoys directly, based only on geometries of putative complexes. So, for example, if internally the neural net recognizes a hydrogen bod, it is because it is observed during training that the configurations of atoms that we call hydrogen bonds are present to a greater extend in native-like structures. This is the same for other favorable or unfavourable interactions - it is all learnt from examples, not from any input terms.The RTCNN score performs extremely well on our benchmarks and the CASF benchmark (Su et al J.Chem.Inf.Model 2019)</p

    Docking to multiple pockets or ligand fields for screening, activity prediction and scaffold hopping

    No full text
    BackgroundTwo recent technological advances dramatically reducing the rate of false-negatives in activity prediction by docking flexible 3D models of compounds include multi-conformational docking (mPockDock) and the docking of candidates to atomic property fields derived by co-crystallized ligands (mApfDock).ResultsThe mApfDock and mPockDock provide the AUC of 90.4 and 83.8%, respectively. The mApfDock gave better performance when compounds required large induced-fit pocket changes unseen in crystallography, whereas the mPockDock is superior when the co-crystallized ligands do not represent sufficient chemical and binding location diversity.ConclusionBoth approaches proved to be efficient for scaffold hopping; they are complementary when the coverage of the co-crystallized complexes is poor but become convergent when the complexes are diverse enough

    ALiBERO: Evolving a Team of Complementary Pocket Conformations Rather than a Single Leader

    No full text
    Docking and virtual screening (VS) reach maximum potential when the receptor displays the structural changes needed for accurate ligand binding. Unfortunately, these conformational changes are often poorly represented in experimental structures or homology models, debilitating their docking performance. Recently, we have shown that receptors optimized with our LiBERO method (Ligand-guided Backbone Ensemble Receptor Optimization) were able to better discriminate active ligands from inactives in flexible-ligand VS docking experiments. The LiBERO method relies on the use of ligand information for selecting the best performing individual pockets from ensembles derived from normal-mode analysis or Monte Carlo. Here we present ALiBERO, a new computational tool that has expanded the pocket selection from single to multiple, allowing for automatic iteration of the sampling-selection procedure. The selection of pockets is performed by a dual method that uses exhaustive combinatorial search plus individual addition of pockets, selecting only those that maximize the discrimination of known actives compounds from decoys. The resulting optimized pockets showed increased VS performance when later used in much larger unrelated test sets consisting of biologically active and inactive ligands. In this paper we will describe the design and implementation of the algorithm, using as a reference the human estrogen receptor alpha

    Mosquito Acetylcholinesterase as a Target for Novel Phenyl-Substituted Carbamates

    No full text
    New insecticides are needed for control of disease-vectoring mosquitoes and this research evaluates the activity of new carbamate acetylcholinesterase (AChE) inhibitors. Biochemical and toxicological characterization of carbamates based on the parent structure of terbam, 3-tert-butylphenyl methylcarbamate, was performed. In vitro enzyme inhibition selectivity (Anopheles gambiae versus human) was assessed by the Ellman assay, as well as the lethality to whole insects by the World Health Organization (WHO) paper contact assay. Bromination at the phenyl C6 position increased inhibitory potency to both AChEs, whereas a 6-iodo substituent led to loss of potency, and both halogenations caused a significant reduction of mosquitocidal activity. Similarly, installation of a hexyl substituent at C6 drastically reduced inhibition of AgAChE, but showed a smaller reduction in the inhibition of hAChE. A series of 4-carboxamido analogs of the parent compound gave reduced activity against AgAChE and generally showed more activity against hAChE than AgAChE. Replacement of the 3-t-buyl group with CF3 resulted in poor anticholinesterase activity, but this compound did have measurable mosquitocidal activity. A series of methyl- and fluoro- analogs of 3-trialkylsilyl compounds were also synthesized, but unfortunately resulted in disappointing activity. Finally, a series of sulfenylated proinsecticides showed poor paper contact toxicity, but one of them had topical activity against adult female Anopheles gambiae. Overall, the analogs prepared here contributed to a better understanding of carbamate structure&#8722;activity relationships (SAR), but no new significant leads were generated
    corecore