772 research outputs found

    A Deep Optical Observation for an Enigmatic Unidentified Gamma-Ray Source 3EG J1835+5918

    Full text link
    We report a deep optical imaging observation by the Subaru telescope for a very soft X-ray source RX J1836.2+5925, which has been suspected to be an isolated neutron star associated with the brightest as-yet unidentified EGRET source outside the Galactic plane, 3EG J1835+5918. An extended source having a complex, bipolar shape is found at B ~ 26, and this might be an extended pulsar nebular whose flux is about 5-6 orders of magnitude lower than gamma-ray flux, although finding a galaxy of this magnitude by chance in the error circle is of order unity. We have found two even fainter, possibly point sources at B ~ 28, although their detections are not firm because of low signal-to-noise. If the extended object of B ~ 26 is a galaxy and not related to 3EG J1835+5918, a lower limit on X-ray/optical flux ratio is set as f_X/f_B >~ 2700, giving a further strong support of the neutron-star identification of 3EG J1835+5918. Interestingly, if either of the two sources at B ~ 28 is the real counterpart of RX J1836.2+5925 and thermal emission from the surface of an isolated neutron star, the temperature and distance to the source become ~ 4 x 10^5K and ~300pc, respectively, showing a striking similarity of its spectral energy distribution to the proto-type radio-quiet gamma-ray pulsar Geminga. No detection of nonthermal hard X-ray emission is consistent with the ASCA upper limit, if the nonthermal flux of 3EG J1835+5918/RX J1836.2+5925 is at a similar level with that of Gemiga.Comment: PASJ Letters in press. (Received March 26; Accepted May 17

    Model-independent constraints on reionization from large-scale CMB polarization

    Full text link
    On large angular scales, the polarization of the CMB contains information about the evolution of the average ionization during the epoch of reionization. Interpretation of the polarization spectrum usually requires the assumption of a fixed functional form for the evolution, e.g. instantaneous reionization. We develop a model-independent method where a small set of principal components completely encapsulate the effects of reionization on the large-angle E-mode polarization for any reionization history within an adjustable range in redshift. Using Markov Chain Monte Carlo methods, we apply this approach to both the 3-year WMAP data and simulated future data. WMAP data constrain two principal components of the reionization history, approximately corresponding to the total optical depth and the difference between the contributions to the optical depth at high and low redshifts. The optical depth is consistent with the constraint found in previous analyses of WMAP data that assume instantaneous reionization, with only slightly larger uncertainty due to the expanded set of models. Using the principal component approach, WMAP data also place a 95% CL upper limit of 0.08 on the contribution to the optical depth from redshifts z>20. With improvements in polarization sensitivity and foreground modeling, approximately five of the principal components can ultimately be measured. Constraints on the principal components, which probe the entire reionization history, can test models of reionization, provide model-independent constraints on the optical depth, and detect signatures of high-redshift reionization.Comment: 14 pages, 13 figures; submitted to Ap

    The prompt optical/near-infrared flare of GRB 050904: the most luminous transient ever detected

    Get PDF
    With a redshift of z=6.295, GRB 050904 is the most distant gamma-ray burst ever discovered. It was an energetic event at all wavelengths and the afterglow was observed in detail in the near-infrared bands. We gathered all available optical and NIR afterglow photometry of this GRB to construct a composite NIR light curve spanning several decades in time and flux density. Transforming the NIR light curve into the optical, we find that the afterglow of GRB 050904 was more luminous at early times than any other GRB afterglow in the pre-\emph{Swift} era, making it at these wavelengths the most luminous transient ever detected. Given the intrinsic properties of GRB 050904 and its afterglow, we discuss if this burst is markedly different from other GRBs at lower redshifts.Comment: The Astronomical Journal, in press; revised version, including the comments of the referee (one figure added, text restructured, all conclusions unchanged), 7 pages, 3 figure

    Are There Any Redshift >8 Gamma-Ray Bursts in the BATSE Catalog?

    Full text link
    Several luminosity indicators have been found for Gamma-Ray Bursts (GRBs) wherein measurable light curve and spectral properties are well-correlated with the peak luminosity. Several papers have each applied one different luminosity relation to find redshifts for BATSE GRBs and claim to identify specific bursts with z>8. The existence of such high redshift events is not surprising, as BATSE has enough sensitivity to see them and GRBs are expected out to the redshift of the first star formation. To improve results we used five luminosity relations with updated calibrations to determine redshifts with error bars. Combining these relations, we calculated the redshifts of 36 BATSE GRBs with claimed z>8. Our results include 13 bursts with our derived best redshift z_best>8, which looks promising at first. But the calculated redshift uncertainties are significantly large in these selected cases. With only one exception, all of our bursts have z_1siglow<9. The one exception (BATSE trigger 2035) is likely a short duration burst at z>~4. Our best case for a very high redshift event is BATSE trigger 3142 with z_best>20 and z_1siglow=8.9, however we can only say z>4.1 at the two-sigma confidence level. In all, we cannot point toward any one BATSE burst as confidently having z>8. One implication is to greatly weaken prior claims that GRBs have a steeply rising rate-density out to high redshifts.Comment: ApJ in press, 18 page

    Infrared Spectral Energy Distribution of Galaxies in the AKARI All Sky Survey: Correlations with Galaxy Properties, and Their Physical Origin

    Full text link
    We have studied the properties of more than 1600 low-redshift galaxies by utilizing high-quality infrared flux measurements of the AKARI All-Sky Survey and physical quantities based on optical and 21-cm observations. Our goal is to understand the physics determining the infrared spectral energy distribution (SED). The ratio of the total infrared luminosity L_TIR, to the star-formation rate (SFR) is tightly correlated by a power-law to specific SFR (SSFR), and L_TIR is a good SFR indicator only for galaxies with the largest SSFR. We discovered a tight linear correlation for normal galaxies between the radiation field strength of dust heating, estimated by infrared SED fits (U_h), and that of galactic-scale infrared emission (U_TIR ~ L_TIR/R^2), where R is the optical size of a galaxy. The dispersion of U_h along this relation is 0.3 dex, corresponding to 13% dispersion in the dust temperature. This scaling and the U_h/U_TIR ratio can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. The data also indicate that the heated fraction of the total dust mass is anti-correlated to the dust column density, supporting this interpretation. In the large U_TIR limit, the data of circumnuclear starbursts indicate the existence of an upper limit on U_h, corresponding to the maximum SFR per gas mass of ~ 10 Gyr^{-1}. We find that the number of galaxies sharply drops when they become optically thin against dust-heating radiation, suggesting that a feedback process to galaxy formation (likely by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. Implications are discussed for the M_HI-size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.Comment: 29 pages including 28 figures. matches the published version (PASJ 2011 Dec. 25 issue). The E-open option was chosen for this article, i.e., the official version available from PASJ site (http://pasj.asj.or.jp/v63/n6/630613/630613-frame.html) without restrictio

    Lyman-alpha Damping Wing Constraints on Inhomogeneous Reionization

    Full text link
    One well-known way to constrain the hydrogen neutral fraction, x_H, of the high-redshift intergalactic medium (IGM) is through the shape of the red damping wing of the Lya absorption line. We examine this method's effectiveness in light of recent models showing that the IGM neutral fraction is highly inhomogeneous on large scales during reionization. Using both analytic models and "semi-numeric" simulations, we show that the "picket-fence" absorption typical in reionization models introduces both scatter and a systematic bias to the measurement of x_H. In particular, we show that simple fits to the damping wing tend to overestimate the true neutral fraction in a partially ionized universe, with a fractional error of ~ 30% near the middle of reionization. This bias is generic to any inhomogeneous model. However, the bias is reduced and can even underestimate x_H if the observational sample only probes a subset of the entire halo population, such as quasars with large HII regions. We also find that the damping wing absorption profile is generally steeper than one would naively expect in a homogeneously ionized universe. The profile steepens and the sightline-to-sightline scatter increases as reionization progresses. Of course, the bias and scatter also depend on x_H and so can, at least in principle, be used to constrain it. Damping wing constraints must therefore be interpreted by comparison to theoretical models of inhomogeneous reionization.Comment: 11 pages, 10 figures; submitted to MNRA

    Galactic-Center Hyper-Shell Model for the North Polar Spurs

    Get PDF
    The bipolar-hyper shell (BHS) model for the North Polar Spurs (NPS-E, -W, and Loop I) and counter southern spurs (SPS-E and -W) is revisited based on numerical hydrodynamical simulations. Propagations of shock waves produced by energetic explosive events in the Galactic Center are examined. Distributions of soft X-ray brightness on the sky at 0.25, 0.7, and 1.5 keV in a +/-50 deg x +/-50 deg region around the Galactic Center are modeled by thermal emission from high-temperature plasma in the shock-compressed shell considering shadowing by the interstellar HI and H2 gases. The result is compared with the ROSAT wide field X-ray images in R2, 4 and 6 bands. The NPS and southern spurs are well reproduced by the simulation as shadowed dumbbell-shaped shock waves. We discuss the origin and energetics of the event in relation to the starburst and/or AGN activities in the Galactic Center. [ High resolution pdf is available at http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2016bhs/ ]Comment: 13 pages, 20 figures; To appear in MNRA
    corecore