12,332 research outputs found

    Time-Dependent Density-Functional Theory for Superfluids

    Full text link
    A density-functional theory is established for inhomogeneous superfluids at finite temperature, subject to time-dependent external fields in isothermal conditions. After outlining parallelisms between a neutral superfluid and a charged superconductor, Hohenberg-Kohn-Sham-type theorems are proved for gauge-invariant densities and a set of Bogolubov-Popov equations including exchange and correlation is set up. Earlier results applying in the linear response regime are recovered.Comment: 12 pages. Europhysics Letters, in pres

    Sound propagation in elongated superfluid fermion clouds

    Get PDF
    We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. We treat first the role of the radial density profile in the quasi-onedimensional limit and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor sqrt{3/5} from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a set-up such as that exploited by M.R. Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate

    Boson-fermion mixtures inside an elongated cigar-shaped trap

    Full text link
    We present mean-field calculations of the equilibrium state in a gaseous mixture of bosonic and spin-polarized fermionic atoms with repulsive or attractive interspecies interactions, confined inside a cigar-shaped trap under conditions such that the radial thickness of the two atomic clouds is approaching the magnitude of the s-wave scattering lengths. In this regime the kinetic pressure of the fermionic component is dominant. Full demixing under repulsive boson-fermion interactions can occur only when the number of fermions in the trap is below a threshold, and collapse under attractive interactions is suppressed within the range of validity of the mean-field model. Specific numerical illustrations are given for values of system parameters obtaining in 7Li-6Li clouds.Comment: 12 pages, 6 figure
    corecore