11 research outputs found
Quadratic splines on quad-tri meshes: Construction and an application to simulations on watertight reconstructions of trimmed surfaces
Given an unstructured mesh consisting of quadrilaterals and triangles (we allow both planar and non-planar meshes of arbitrary topology), we present the construction of quadratic splines of mixed smoothness â C1 smooth away from the unstructured regions of T and C0 smooth otherwise. The splines have several useful B-spline-like properties â partition of unity, non-negativity, local support and linear independence â and allow for straightforward imposition of boundary conditions. We propose a non-nested refinement process for the splines with multiple advantages â a simple computer implementation, reduction in the footprint of C0 smoothness, boundary preservation, and excellent approximation behaviour in simulations. Furthermore, the refinement process leaves the splines invariant on the mesh boundary. Numerical tests indicate that the spline spaces demonstrate optimal approximation behaviour in the L2 and H1 norms under mesh refinement, and provide a viable approach to simulations on watertight reconstructions of trimmed surfaces.Numerical Analysi
Almost-C<sup>1</sup> splines: Biquadratic splines on unstructured quadrilateral meshes and their application to fourth order problems
Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-C1 splines are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are C1 smooth at all regular and extraordinary vertices. Moreover, they are C1 smooth across all edges between regular vertices and C0 smooth across all edges that are adjacent to an extraordinary vertex. The splines thus form H2-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-C1 splines are described in an explicit BĂ©zier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behaviour.Numerical Analysi
Counting the dimension of splines of mixed smoothness: A general recipe, and its application to planar meshes of arbitrary topologies
In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, âmixed smoothnessâ refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homological algebra. These tools were first applied to the study of splines by Billera (Trans. Am. Math. Soc. 310(1), 325â340, 1988). Using them, estimation of the spline space dimension amounts to the study of the Billera-Schenck-Stillman complex for the spline space. In particular, when the homology in positions 1 and 0 of this complex is trivial, the dimension of the spline space can be computed combinatorially. We call such spline spaces âlower-acyclic.â In this paper, starting from a spline space which is lower-acyclic, we present sufficient conditions that ensure that the same will be true for the spline space obtained after relaxing the smoothness requirements across a subset of the mesh edges. This general recipe is applied in a specific setting: meshes of arbitrary topologies. We show how our results can be used to compute the dimensions of spline spaces on triangulations, polygonal meshes, and T-meshes with holes.Numerical Analysi
Algebraic methods to study the dimension of supersmooth spline spaces
Multivariate piecewise polynomial functions (or splines) on polyhedral complexes have been extensively studied over the past decades and find applications in diverse areas of applied mathematics including numerical analysis, approximation theory, and computer aided geometric design. In this paper we address various challenges arising in the study of splines with enhanced mixed (super-)smoothness conditions at the vertices and across interior faces of the partition. Such supersmoothness can be imposed but can also appear unexpectedly on certain splines depending on the geometry of the underlying polyhedral partition. Using algebraic tools, a generalization of the BilleraâSchenckâStillman complex that includes the effect of additional smoothness constraints leads to a construction which requires the analysis of ideals generated by products of powers of linear forms in several variables. Specializing to the case of planar triangulations, a combinatorial lower bound on the dimension of splines with supersmoothness at the vertices is presented, and we also show that this lower bound gives the exact dimension in high degree. The methods are further illustrated with several examples.Numerical Analysi
Dimension of polynomial splines of mixed smoothness on T-meshes
In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-meshes. This is the setting when different orders of smoothness are required across the edges of the mesh. Given a spline space whose dimension is independent of its T-mesh's geometric embedding, we present constructive and sufficient conditions that ensure that the smoothness across a subset of the mesh edges can be reduced while maintaining stability of the dimension. The conditions have a simple geometric interpretation. Examples are presented to show the applicability of the results on both hierarchical and non-hierarchical T-meshes. For hierarchical T-meshes it is shown that mixed smoothness spline spaces that contain the space of PHT-splines (Deng et al., 2008) always have stable dimension
A General Class of C<sup>1</sup> Smooth Rational Splines: Application to Construction of Exact Ellipses and Ellipsoids
In this paper, we describe a general class of C1 smooth rational splines that enables, in particular, exact descriptions of ellipses and ellipsoids â some of the most important primitives for CAD and CAE. The univariate rational splines are assembled by transforming multiple sets of NURBS basis functions via so-called design-through-analysis compatible extraction matrices; different sets of NURBS are allowed to have different polynomial degrees and weight functions. Tensor products of the univariate splines yield multivariate splines. In the bivariate setting, we describe how similar design-through-analysis compatible transformations of the tensor-product splines enable the construction of smooth surfaces containing one or two polar singularities. The material is self-contained, and is presented such that all tools can be easily implemented by CAD or CAE practitioners within existing software that support NURBS. To this end, we explicitly present the matrices (a) that describe our splines in terms of NURBS, and (b) that help refine the splines by performing (local) degree elevation and knot insertion. Finally, all C1 spline constructions yield spline basis functions that are locally supported and form a convex partition of unity.Delft Institute of Applied MathematicsNumerical Analysi
Isogeometric discrete differential forms: Non-uniform degrees, Bezier extraction, polar splines and flows on surfaces: Non-uniform degrees, Bézier extraction, polar splines and flows on surfaces
Spaces of discrete differential forms can be applied to numerically solve the partial differential equations that govern phenomena such as electromagnetics and fluid mechanics. Robustness of the resulting numerical methods is complemented by pointwise satisfaction of conservation laws (e.g., mass conservation) in the discrete setting. Here we present the construction of isogeometric discrete differential forms, i.e., differential form spaces built using smooth splines. We first present an algorithm for computing BĂ©zier extraction operators for univariate spline differential forms that allow local degree elevation. Then, using tensor-products of the univariate splines, a complex of discrete differential forms is built on meshes that contain polar singularities, i.e., edges that are singularly mapped onto points. We prove that the spline complexes share the same cohomological structure as the de Rham complex. Several examples are presented to demonstrate the applicability of the proposed methodology. In particular, the splines spaces derived are used to simulate generalized Stokes flow on arbitrarily curved smooth surfaces and to numerically demonstrate (a) optimal approximation and infâsup stability of the spline spaces; (b) pointwise incompressible flows; and (c) flows on deforming surfaces.Numerical Analysi
An optimally convergent smooth blended B-spline construction for semi-structured quadrilateral and hexahedral meshes
Easy to construct and optimally convergent generalisations of B-splines to unstructured meshes are essential for the application of isogeometric analysis to domains with non-trivial topologies. Nonetheless, especially for hexahedral meshes, the construction of smooth and optimally convergent isogeometric analysis basis functions is still an open question. We introduce a simple partition of unity construction that yields smooth blended B-splines, referred to as SB-splines, on semi-structured quadrilateral and hexahedral meshes, i.e. on mostly structured meshes with sufficiently separated unstructured regions. To this end, we first define the mixed smoothness B-splines that are C0 continuous in the unstructured regions of the mesh but have higher smoothness everywhere else. Subsequently, the SB-splines are obtained by smoothly blending in the physical space the mixed smoothness B-splines with Bernstein bases of equal degree. One of the key novelties of our approach is that the required smooth weight functions are assembled from the available smooth B-splines on the unstructured mesh. The SB-splines are globally smooth, non-negative, have no breakpoints within the elements and reduce to conventional B-splines away from the unstructured regions of the mesh. Although we consider only quadratic mixed smoothness B-splines in this paper, the construction generalises to arbitrary degrees. We demonstrate the excellent performance of SB-splines studying Poisson and biharmonic problems on semi-structured quadrilateral and hexahedral meshes, and numerically establishing their optimal convergence in one and two dimensions.Green Open Access added to TU Delft Institutional Repository âYou share, we take care!â â Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Numerical Analysi
Polynomial spline spaces of non-uniform bi-degree on T-meshes: combinatorial bounds on the dimension
Polynomial splines are ubiquitous in the fields of computer-aided geometric design and computational analysis. Splines on T-meshes, especially, have the potential to be incredibly versatile since local mesh adaptivity enables efficient modeling and approximation of local features. Meaningful use of such splines for modeling and approximation requires the construction of a suitable spanning set of linearly independent splines, and a theoretical understanding of the spline space dimension can be a useful tool when assessing possible approaches for building such splines. Here, we provide such a tool. Focusing on T-meshes, we study the dimension of the space of bivariate polynomial splines, and we discuss the general setting where local mesh adaptivity is combined with local polynomial degree adaptivity. The latter allows for the flexibility of choosing non-uniform bi-degrees for the splines, i.e., different bi-degrees on different faces of the T-mesh. In particular, approaching the problem using tools from homological algebra, we generalize the framework and the discourse presented by Mourrain (Math. Comput. 83(286):847â871, 2014) for uniform bi-degree splines. We derive combinatorial lower and upper bounds on the spline space dimension and subsequently outline sufficient conditions for the bounds to coincide.Numerical Analysi
A comparison of smooth basis constructions for isogeometric analysis
In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modelling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-C1, Analysis-Suitable G1 and the Approximate C1 constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate C1 and Analysis-Suitable G1 converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-C1 and D-Patch provide relatively easy construction on complex geometries. The Almost-C1 method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate C1 and Analysis-Suitable G1 applicable to more complex geometries.Numerical AnalysisShip and Offshore Structure