789 research outputs found
Quasi-particle dephasing time in disordered d-wave superconductors
We evaluate the low-temperature cutoff for quantum interference 1/tf induced
in a d-wave superconductor by the diffusion enhanced quasiparticle interactions
in the presence of disorder. We carry out our analysis in the framework of the
non-linear sigma-model which allows a direct calculation of 1/tf, as the mass
of the transverse modes of the theory. Only the triplet amplitude in the
particle-hole channel and the Cooper amplitude with is pairing symmetry
contribute to 1/tf. We discuss the possible relevance of our results to the
present disagreement between thermal transport data in cuprates and the
localization theory for d-wave quasiparticles
Coherence length in superconductors from weak to strong coupling
We study the evolution of the superconducting coherence length from
weak to strong coupling, both within a s-wave and a d-wave lattice model. We
show that the identification of with the Cooper-pair size
in the weak-coupling regime is meaningful only for a fully-gapped (e.g.,
s-wave) superconductor. Instead in the d-wave superconductor, where
diverges, we show that is properly defined as the
characteristic length scale for the correlation function of the modulus of the
superconducting order parameter. The strong-coupling regime is quite
intriguing, since the interplay between particle-particle and particle-hole
channel is no more negligible. In the case of s-wave pairing, which allows for
an analytical treatment, we show that is of order of the lattice
spacing at finite densities. In the diluted regime diverges, recovering
the behavior of the coherence length of a weakly interacting effective bosonic
system. Similar results are expected to hold for d-wave superconductors.Comment: 11 pages, 5 figures. Two appendices and new references adde
Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems
We show how the onset of a non-Slater antiferromagnetic ordering in a
correlated material can be detected by optical spectroscopy. Using dynamical
mean-field theory we identify two distinctive features: The antiferromagnetic
ordering is associated with an enhanced spectral weight above the optical gap,
and well separated spin-polaron peaks emerge in the optical spectrum. Both
features are indeed observed in LaSrMnO_4 [G\"ossling et al., Phys. Rev. B 77,
035109 (2008)]Comment: 11 pages, 9 figure
Temperature dependence of the optical spectral weight in the cuprates: Role of electron correlations
We compare calculations based on the Dynamical Mean-Field Theory of the
Hubbard model with the infrared spectral weight of
LaSrCuO and other cuprates. Without using fitting parameters we
show that most of the anomalies found in with respect to normal
metals, including the existence of two different energy scales for the doping-
and the -dependence of , can be ascribed to strong correlation
effects.Comment: 4 pages, 3 figures. Minor corrections, corrected some typos and added
reference
From infinite to two dimensions through the functional renormalization group
We present a novel scheme for an unbiased and non-perturbative treatment of
strongly correlated fermions. The proposed approach combines two of the most
successful many-body methods, i.e., the dynamical mean field theory (DMFT) and
the functional renormalization group (fRG). Physically, this allows for a
systematic inclusion of non-local correlations via the flow equations of the
fRG, after the local correlations are taken into account non-perturbatively by
the DMFT. To demonstrate the feasibility of the approach, we present numerical
results for the two-dimensional Hubbard model at half-filling.Comment: 5 pages, 4 figure
Kinks: Fingerprints of strong electronic correlations
The textbook knowledge of solid state physics is that the electronic specific
heat shows a linear temperature dependence with the leading corrections being a
cubic term due to phonons and a cubic-logarithmic term due to the interaction
of electrons with bosons. We have shown that this longstanding conception needs
to be supplemented since the generic behavior of the low-temperature electronic
specific heat includes a kink if the electrons are sufficiently strongly
correlatedComment: 4 pages, 1 figure, ICM 2009 conference proceedings (to appear in
Journal of Physics: Conference Series
Fast and Accurate Error Simulation for CNNs Against Soft Errors
The great quest for adopting AI-based computation for safety-/mission-critical applications motivates the interest towards methods for assessing the robustness of the application w.r.t. not only its training/tuning but also errors due to faults, in particular soft errors, affecting the underlying hardware. Two strategies exist: architecture-level fault injection and application-level functional error simulation. We present a framework for the reliability analysis of Convolutional Neural Networks (CNNs) via an error simulation engine that exploits a set of validated error models extracted from a detailed fault injection campaign. These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults and bridge the gap between fault injection and error simulation, exploiting the advantages of both approaches. We compared our methodology against SASSIFI for the accuracy of functional error simulation w.r.t. fault injection, and against TensorFI in terms of speedup for the error simulation strategy. Experimental results show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t. TensorFI, that only implements a limited set of error models
Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model
Comment: 10 pages, 8 figure
Continuous measurements of real-life bidirectional pedestrian flows on a wide walkway
Employing partially overlapping overhead \kinectTMS sensors and automatic pedestrian tracking algorithms we recorded the crowd traffic in a rectilinear section of the main walkway of Eindhoven train station on a 24/7 basis. Beside giving access to the train platforms (it passes underneath the railways), the walkway plays an important connection role in the city. Several crowding scenarios occur during the day, including high- and low-density dynamics in uni- and bi-directional regimes. In this paper we discuss our recording technique and we illustrate preliminary data analyses. Via fundamental diagrams-like representations we report pedestrian velocities and fluxes vs. pedestrian density. Considering the density range - ped/m, we find that at densities lower than ped/m pedestrians in unidirectional flows walk faster than in bidirectional regimes. On the opposite, velocities and fluxes for even bidirectional flows are higher above ped/m
- …