2,531 research outputs found

    Opinion modeling on social media and marketing aspects

    Get PDF
    We introduce and discuss kinetic models of opinion formation on social networks in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion formation model is subsequently coupled with a kinetic model describing the spreading of popularity of a product on the web through a social network. Numerical experiments on the underlying kinetic models show a good qualitative agreement with some measured trends of hashtags on social media websites and illustrate how companies can take advantage of the network structure to obtain at best the advertisement of their products

    Phase transitions in a two parameter model of opinion dynamics with random kinetic exchanges

    Full text link
    Recently, a model of opinion formation with kinetic exchanges has been proposed in which a spontaneous symmetry breaking transition was reported [M. Lallouache et al, Phys. Rev. E, {\bf 82} 056112 (2010)]. We generalise the model to incorporate two parameters, λ\lambda, to represent conviction and μ\mu, to represent the influencing ability of individuals. A phase boundary given by λ=1μ/2\lambda=1-\mu/2 is obtained separating the symmetric and symmetry broken phases: the effect of the influencing term enhances the possibility of reaching a consensus in the society. The time scale diverges near the phase boundary in a power law manner. The order parameter and the condensate also show power law growth close to the phase boundary albeit with different exponents. Theexponents in general change along the phase boundary indicating a non-universality. The relaxation times, however, become constant with increasing system size near the phase boundary indicating the absence of any diverging length scale. Consistently, the fluctuations remain finite but show strong dependence on the trajectory along which it is estimated.Comment: Version accepted for PRE; text modified, new figures and references adde

    A Low-Cost Approach to the Skin Effect Compensation in Cylindrical Shunts

    Get PDF
    In this paper the development of a new design solution for high-current shunt resistors is presented, which allows achieving very good accuracy while requiring a simple and low-cost manufacturing process. It is based on a solid cylinder having the voltage measurement circuit which runs through two holes drilled in the cylinder itself. Starting from the well-known expression of the current density in a cylindrical conductor, the frequency response of the shunt is obtained in closed form as a function of the geometric parameters. In turn, the positions of the voltage measurement terminals are chosen by optimizing the frequency response function over a specified range. A shunt prototype has been manufactured and its measurement performance has been evaluated. The experimental results confirm the validity of the approach and highlight the significant improvement with respect to the single-hole cylindrical shunt which has been recently proposed by the authors. The obtained measurement accuracy is noticeable when compared with the ease of manufacturing

    The dissipative linear Boltzmann equation for hard spheres

    Full text link
    We prove the existence and uniqueness of an equilibrium state with unit mass to the dissipative linear Boltzmann equation with hard--spheres collision kernel describing inelastic interactions of a gas particles with a fixed background. The equilibrium state is a universal Maxwellian distribution function with the same velocity as field particles and with a non--zero temperature lower than the background one, which depends on the details of the binary collision. Thanks to the H--theorem we then prove strong convergence of the solution to the Boltzmann equation towards the equilibrium.Comment: 17 pages, submitted to Journal of Statistical Physic

    ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL

    No full text
    In this paper, we analyse the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale [16], which describes the collective behavior of an ensemble of organisms, animals or devices. This kinetic version introduced in [24] is here obtained starting from a Boltzmann-type equation. The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. A continuous analogue of the theorems of [16] is shown to hold for the solutions on the kinetic model. More precisely, the solutions will concentrate exponentially fast their velocity to their mean while in space they will converge towards a translational flocking solution

    Self-similarity and power-like tails in nonconservative kinetic models

    Full text link
    In this paper, we discuss the large--time behavior of solution of a simple kinetic model of Boltzmann--Maxwell type, such that the temperature is time decreasing and/or time increasing. We show that, under the combined effects of the nonlinearity and of the time--monotonicity of the temperature, the kinetic model has non trivial quasi-stationary states with power law tails. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution. The same idea is applied to investigate the large-time behavior of an elementary kinetic model of economy involving both exchanges between agents and increasing and/or decreasing of the mean wealth. In this last case, the large-time behavior of the solution shows a Pareto power law tail. Numerical results confirm the previous analysis

    Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section

    Full text link
    This paper focuses on the study of existence and uniqueness of distributional and classical solutions to the Cauchy Boltzmann problem for the soft potential case assuming Sn1S^{n-1} integrability of the angular part of the collision kernel (Grad cut-off assumption). For this purpose we revisit the Kaniel--Shinbrot iteration technique to present an elementary proof of existence and uniqueness results that includes large data near a local Maxwellian regime with possibly infinite initial mass. We study the propagation of regularity using a recent estimate for the positive collision operator given in [3], by E. Carneiro and the authors, that permits to study such propagation without additional conditions on the collision kernel. Finally, an LpL^{p}-stability result (with 1p1\leq p\leq\infty) is presented assuming the aforementioned condition.Comment: 19 page

    Tanaka Theorem for Inelastic Maxwell Models

    Get PDF
    We show that the Euclidean Wasserstein distance is contractive for inelastic homogeneous Boltzmann kinetic equations in the Maxwellian approximation and its associated Kac-like caricature. This property is as a generalization of the Tanaka theorem to inelastic interactions. Consequences are drawn on the asymptotic behavior of solutions in terms only of the Euclidean Wasserstein distance

    Low-Cost Battery Monitoring by Converter-Based Electrochemical Impedance Spectroscopy

    Get PDF
    The use of batteries and other electrochemical devices in modern power systems is rapidly increasing, with stricter requirements in terms of cost, efficiency and reliability. Innovative monitoring solutions are therefore urged to allow a successful development of a wide range of emerging applications, including electric vehicles and large-scale energy storage to support renewable energy generation. Presently, a huge gap still exists between the accurate and sophisticated monitoring techniques commonly employed in laboratory tests, on the one hand, and the simple and rough solutions available in most commercial applications, on the other hand. The objective of this paper is therefore to contribute to the development of low-cost but accurate solutions for commercial battery condition monitoring, by proposing an embedded system that combines real-time digital signal processing with the high computational power and user friendly interface of a modern computer, at a cost comparable to a simple micro-controller. In more detail, the paper focuses on electrochemical impedance spectroscopy on a battery performed by a DC-DC power converter, and it explains how the proposed low-cost off-the-shelf hardware can control the converter, acquire the measurement signals, accurately process them in the time and frequency domains, and estimate the result uncertainty in real-time, which is necessary to promptly and reliably detect any variation in the battery condition

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde
    corecore