28 research outputs found

    Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ

    Get PDF
    Mesenchymal stem cells (MSCs) may be used as a cell source for cell therapy of solid organs due to their differentiation potential and paracrine effect. Nevertheless, optimization of MSC-based therapy needs to develop alternative strategies to improve cell administration and efficiency. One option is the use of alginate microencapsulation, which presents an excellent biocompatibility and an in vivo stability. As MSCs are hypoimmunogenic, it was conceivable to produce microparticles with [alginate-poly-L-lysine-alginate (APA) microcapsules] or without (alginate microspheres) a surrounding protective membrane. Therefore, the aim of this study was to determine the most suitable microparticles to encapsulate MSCs for engraftment on solid organ. First, we compared the two types of microparticles with 4 × 106 MSCs/ml of alginate. Results showed that each microparticle has distinct morphology and mechanical resistance but both remained stable over time. However, as MSCs exhibited a better viability in microspheres than in microcapsules, the study was pursued with microspheres. We demonstrated that viable MSCs were still able to produce the paracrine factor bFGF and did not present any chondrogenic or osteogenic differentiation, processes sometimes reported with the use of polymers. We then proved that microspheres could be implanted under the renal capsule without degradation with time or inducing impairment of renal function. In conclusion, these microspheres behave as an implantable scaffold whose biological and functional properties could be adapted to fit with clinical applications

    Natural Products from the Lithistida: A Review of the Literature since 2000

    Get PDF
    Lithistid sponges are known to produce a diverse array of compounds ranging from polyketides, cyclic and linear peptides, alkaloids, pigments, lipids, and sterols. A majority of these structurally complex compounds have very potent and interesting biological activities. It has been a decade since a thorough review has been published that summarizes the literature on the natural products reported from this amazing sponge order. This review provides an update on the current taxonomic classification of the Lithistida, describes structures and biological activities of 131 new natural products, and discusses highlights from the total syntheses of 16 compounds from marine sponges of the Order Lithistida providing a compilation of the literature since the last review published in 2002

    Les acteurs moléculaires du remodelage cardiaque pathologique

    No full text
    L’exercice physique ou l’hypertension artĂ©rielle sont deux situations, l’une physiologique, l’autre pathologique, au cours desquelles le cƓur augmente son travail hĂ©modynamique. Cette adaptation repose sur un remodelage cardiaque diffĂ©rent selon la nature physiologique ou pathologique du stress. IllustrĂ©e par deux exemples, l’étude des Ă©vĂ©nements molĂ©culaires aboutissant au remodelage cardiaque offre de nouvelles opportunitĂ©s pour le dĂ©veloppement de thĂ©rapies de l’insuffisance cardiaque. RĂ©cemment dĂ©crite, la protĂ©ine Epac1 est un relais du second messager AMPc. À la suite d’un stress pathologique, la mise en Ă©vidence de ses rĂŽles dans l’hypertrophie, la fibrose cardiaque et l’altĂ©ration du cycle calcique suggĂšre que son inhibition pharmacologique peut prĂ©senter un intĂ©rĂȘt thĂ©rapeutique. Carabin est une nouvelle protĂ©ine rĂ©gulatrice de plusieurs effecteurs molĂ©culaires impliquĂ©s dans le remodelage cardiaque pathologique. La manipulation expĂ©rimentale de son expression modifie profondĂ©ment le dĂ©veloppement de l’insuffisance cardiaque

    Extracellular vesicles of MSCs and cardiomyoblasts are vehicles for lipid mediators

    No full text
    International audienceRecent works reported the relevance of cellular exosomes in the evolution of different pathologies. However, most of these studies focused on the ability of exosomes to convey mi-RNA from cell to cell. The level of knowledge concerning the transport of lipid mediators by these nanovesicles is more than fragmented. The role of lipid mediators in the inflammatory signaling is fairly well described, in particular concerning the derivatives of the arachidonic acid (AA), called eicosanoĂŻds or lipid mediators. The aim of the present work was to study the transport of these lipids within the extracellular vesicles of rat bone marrow mesenchymal stem cells (BM-MSC) and the cardiomyoblast cell line H9c2. We were able to characterize, for the first time, complete profiles of oxilipins within these nanovesicles. We studied also the impact on these profiles, of the polyunsaturated fatty acids (PUFAs) know to be precursors of the inflammatory signaling molecules (AA, eicosapentaenoic acid EPA and Docosahexaenoic acid DHA), at physiological concentrations. By growing the progenitor cells under PUFAs supplementation, we provide a comprehensive assessment of the beneficial effect of u-3 PUFA therapy. Actually, our results tend to support the resolving role of the inflammation that stromal cell-derived extracellular vesicles can have within the cardiac microenvironment

    Viability and Functionality of Bovine Chromaffin Cells Encapsulated Into Alginate-PLL Microcapsules With a Liquefied Inner Core

    No full text
    Implantation of adrenal medullary bovine chromaffin cells (BCC), which synthesize and secrete a combination of pain-reducing neuroactive compounds including catecholamines and opioid peptides, has been proposed for the treatment of intractable cancer pain. Macro- or microencapsulation of such cells within semipermeable membranes is expected to protect the transplant from the host’s immune system. In the present study, we report the viability and functionality of BCC encapsulated into microcapsules of alginate-poly-Llysine (PLL) with a liquefied inner core. The experiment was carried out during 44 days. Empty microcapsules were characterized in terms of morphology, permeability, and mechanical resistance. At the same time, the viability and functionality of both encapsulated and nonencapsulated BCC were evaluated in vitro. We obtained viable BCC with excellent functionality: immunocytochemical analysis revealed robust survival of chromaffin cells 30 days after isolation and microencapsulation. HPLC assay showed that encapsulated BCC released catecholamines basally during the time course study. Taken together, these results demonstrate that viable BCC can be successfully encapsulated into alginate-PLL microcapsules with a liquefied inner core

    CD4(+) T cells promote the transition from hypertrophy to heart failure during chronic pressure overload.

    No full text
    International audienceBACKGROUND: The mechanisms by which the heart adapts to chronic pressure overload, producing compensated hypertrophy and eventually heart failure (HF), are still not well defined. We aimed to investigate the involvement of T cells in the progression to HF using a transverse aortic constriction (TAC) model. METHODS AND RESULTS: Chronic HF was associated with accumulation of T lymphocytes and activated/effector CD4(+) T cells within cardiac tissue. After TAC, enlarged heart mediastinal draining lymph nodes showed a high density of both CD4(+) and CD8(+) T-cell subsets. To investigate the role of T cells in HF, TAC was performed on mice deficient for recombination activating gene 2 expression (RAG2KO) lacking B and T lymphocytes. Compared with wild-type TAC mice, RAG2KO mice did not develop cardiac dilation and showed improved contractile function and blunted adverse remodeling. Reconstitution of the T-cell compartment into RAG2KO mice before TAC enhanced contractile dysfunction, fibrosis, collagen accumulation, and cross-linking. To determine the involvement of a specific T-cell subset, we performed TAC on mice lacking CD4(+) (MHCIIKO) and CD8(+) T-cell subsets (CD8KO). In contrast to CD8KO mice, MHCIIKO mice did not develop ventricular dilation and dysfunction. MHCIIKO mice also displayed very low fibrosis, collagen accumulation, and cross-linking within cardiac tissue. Interestingly, mice with transgenic CD4(+) T-cell receptor specific for ovalbumin failed to develop HF and adverse remodeling. CONCLUSIONS: These results demonstrate for the first time a crucial role of CD4(+) T cells and specific antigen recognition in the progression from compensated cardiac hypertrophy to HF

    Seroprevalence of typhus group and spotted fever group Rickettsia exposures on Reunion island

    No full text
    International audienceOBJECTIVE:Murine typhus has been increasingly reported on Reunion island, Indian ocean, following documentation of eight autochthonous infections in 2012-2013. We conducted a serosurvey to assess the magnitude of the seroprevalence of rickettsioses in the population. Two hundred and forty-one stored frozen sera taken from the 2009 Copanflu-RUN cohort were analysed using an immunofluorescence assay allowing to distinguish typhus group (TGR) and spotted fever group Rickesttsiae (SFGR). Seropositivity was defined for a dilution titre of Rickettsia IgG antibodies ≄ 1:64. Seroprevalence was weighted to account for the discrepancy between the Copanflu-RUN subset and the general population, as to infer prevalence at community level. Prevalence proportion ratios (PPR) were measured using log-binomial models.RESULTS:The weighted seroprevalences of typhus group rickettsioses and spotted fever group rickettsioses were of 12.71% (95% CI 8.84-16.58%) and 17.68% (95% CI 13.25-22.11%), respectively. Pooled together, data suggested that a fifth of the population had been exposed at least to one Rickettsia group. Youths (< 20 years) were less likely seropositive than adults (adjusted PPR 0.13, 95% CI 0.01-0.91). People living in the western dryer part of the island were more exposed (adjusted PPR 2.53, 95% CI 1.07-5.97). Rickettsioses are endemic on Reunion island and circulated before their first identification as murine typhus in year 2011. Surprisingly, since isolation of Rickettsia africae from Amblyomma variegatum in year 2004 or isolation of Rickettsia felis from Amblyomma loculosum, no autochthonous cases of African tick-bite fever or flea-borne spotted fever has yet been diagnosed

    Seroprevalence of Coxiella burnetii (Q fever) Exposure in Humans on Reunion Island

    Get PDF
    International audienceAfter the documentation of sporadic cases of Q fever endocarditis, we conducted a serosurvey to assess Coxiella burnetii exposure on Reunion Island. Two hundred forty-one stored frozen human sera were analyzed using an immunofluorescence assay. The weighted seroprevalence of Q fever was of 6.81% (95% confidence interval, 4.02%–9.59%). Despite the absence of infection in youths <20 years of age, exposure was not driven by age or by gender. There was a spatial disparity in exposure across the island, with higher prevalence being reported in regions where ruminant farms are present. The seroprevalence pattern suggests that Q fever is endemic on Reunion Island

    Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death

    No full text
    International audienceRationale: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. Objective: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. Methods and Results: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation (Epac1−/−) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation–induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation–induced cell death. Mechanistically, Epac1 favors Ca2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca2+/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. Conclusions: Our results reveal the existence, within mitochondria, of different cAMP–Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage
    corecore