183 research outputs found

    Event detection in location-based social networks

    Get PDF
    With the advent of social networks and the rise of mobile technologies, users have become ubiquitous sensors capable of monitoring various real-world events in a crowd-sourced manner. Location-based social networks have proven to be faster than traditional media channels in reporting and geo-locating breaking news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the announcement from the communication department at the White House. However, the deluge of user-generated data on these networks requires intelligent systems capable of identifying and characterizing such events in a comprehensive manner. The data mining community coined the term, event detection , to refer to the task of uncovering emerging patterns in data streams . Nonetheless, most data mining techniques do not reproduce the underlying data generation process, hampering to self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of event detection in Twitter : a data mining technique called Tweet-SCAN and a machine learning technique called Warble. We assess and compare both techniques in a dataset of tweets geo-located in the city of Barcelona during its annual festivities. Last but not least, we present the algorithmic changes and data processing frameworks to scale up the proposed techniques to big data workloads.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft

    A methodology for Spark parameter tuning

    Get PDF
    Spark has been established as an attractive platform for big data analysis, since it manages to hide most of the complexities related to parallelism, fault tolerance and cluster setting from developers. However, this comes at the expense of having over 150 configurable parameters, the impact of which cannot be exhaustively examined due to the exponential amount of their combinations. The default values allow developers to quickly deploy their applications but leave the question as to whether performance can be improved open. In this work, we investigate the impact of the most important tunable Spark parameters with regards to shuffling, compression and serialization on the application performance through extensive experimentation using the Spark-enabled Marenostrum III (MN3) computing infrastructure of the Barcelona Supercomputing Center. The overarching aim is to guide developers on how to proceed to changes to the default values. We build upon our previous work, where we mapped our experience to a trial-and-error iterative improvement methodology for tuning parameters in arbitrary applications based on evidence from a very small number of experimental runs. The main contribution of this work is that we propose an alternative systematic methodology for parameter tuning, which can be easily applied onto any computing infrastructure and is shown to yield comparable if not better results than the initial one when applied to MN3; observed speedups in our validating test case studies start from 20%. In addition, the new methodology can rely on runs using samples instead of runs on the complete datasets, which render it significantly more practical.Peer ReviewedPostprint (author's final draft

    Multimedia big data computing for in-depth event analysis

    Get PDF
    While the most part of ”big data” systems target text-based analytics, multimedia data, which makes up about 2/3 of internet traffic, provide unprecedented opportunities for understanding and responding to real world situations and challenges. Multimedia Big Data Computing is the new topic that focus on all aspects of distributed computing systems that enable massive scale image and video analytics. During the course of this paper we describe BPEM (Big Picture Event Monitor), a Multimedia Big Data Computing framework that operates over streams of digital photos generated by online communities, and enables monitoring the relationship between real world events and social media user reaction in real-time. As a case example, the paper examines publicly available social media data that relate to the Mobile World Congress 2014 that has been harvested and analyzed using the described system.Peer ReviewedPostprint (author's final draft

    Modeling cloud resources using machine learning

    Get PDF
    Cloud computing is a new Internet infrastructure paradigm where management optimization has become a challenge to be solved, as all current management systems are human-driven or ad-hoc automatic systems that must be tuned manually by experts. Management of cloud resources require accurate information about all the elements involved (host machines, resources, offered services, and clients), and some of this information can only be obtained a posteriori. Here we present the cloud and part of its architecture as a new scenario where data mining and machine learning can be applied to discover information and improve its management thanks to modeling and prediction. As a novel case of study we show in this work the modeling of basic cloud resources using machine learning, predicting resource requirements from context information like amount of load and clients, and also predicting the quality of service from resource planning, in order to feed cloud schedulers. Further, this work is an important part of our ongoing research program, where accurate models and predictors are essential to optimize cloud management autonomic systems.Postprint (published version

    Scaling DBSCAN-like algorithms for event detection systems in Twitter

    Get PDF
    The increasing use of mobile social networks has lately transformed news media. Real-world events are nowadays reported in social networks much faster than in traditional channels. As a result, the autonomous detection of events from networks like Twitter has gained lot of interest in both research and media groups. DBSCAN-like algorithms constitute a well-known clustering approach to retrospective event detection. However, scaling such algorithms to geographically large regions and temporarily long periods present two major shortcomings. First, detecting real-world events from the vast amount of tweets cannot be performed anymore in a single machine. Second, the tweeting activity varies a lot within these broad space-time regions limiting the use of global parameters. Against this background, we propose to scale DBSCAN-like event detection techniques by parallelizing and distributing them through a novel density-aware MapReduce scheme. The proposed scheme partitions tweet data as per its spatial and temporal features and tailors local DBSCAN parameters to local tweet densities. We implement the scheme in Apache Spark and evaluate its performance in a dataset composed of geo-located tweets in the Iberian peninsula during the course of several football matches. The results pointed out to the benefits of our proposal against other state-of-the-art techniques in terms of speed-up and detection accuracy.Peer ReviewedPostprint (author's final draft

    Towards the cloudification of the social networks analytics

    Get PDF
    In the last years, with the increase of the available data from social networks and the rise of big data technologies, social data has emerged as one of the most profitable market for companies to increase their benefits. Besides, social computation scientists see such data as a vast ocean of information to study modern human societies. Nowadays, enterprises and researchers are developing their own mining tools in house, or they are outsourcing their social media mining needs to specialised companies with its consequent economical cost. In this paper, we present the first cloud computing service to facilitate the deployment of social media analytics applications to allow data practitioners to use social mining tools as a service. The main advantage of this service is the possibility to run different queries at the same time and combine their results in real time. Additionally, we also introduce twearch, a prototype to develop twitter mining algorithms as services in the cloud.Peer ReviewedPostprint (author’s final draft

    Characterizing cloud federation for enhancing providers' profit

    Get PDF
    Cloud federation has been proposed as a new paradigm that allows providers to avoid the limitation of owning only a restricted amount of resources, which forces them to reject new customers when they have not enough local resources to fulfill their customers’ requirements. Federation allows a provider to dynamically outsource resources to other providers in response to demand variations. It also allows a provider that has underused resources to rent part of them to other providers. Both things could make the provider to get more profit when used adequately. This requires that the provider has a clear understanding of the potential of each federation decision, in order to choose the most convenient depending on the environment conditions. In this paper, we present a complete characterization of providers’ federation in the Cloud, including decision equations to outsource resources to other providers, rent free resources to other providers (i.e. insourcing), or shutdown unused nodes to save power, and we characterize these decisions as a function of several parameters. Then, we demonstrate in the evaluation section how a provider can enhance its profit by using these equations to exploit federation, and how the different parameters influence which is the best decision on each situation.Peer ReviewedPostprint (published version

    Elastic management of tasks in virtualized environments

    Get PDF
    Nowadays, service providers in the Cloud offer complex services ready to be used as it was a commodity like water or electricity to their customers. A key technology for this approach is virtualization which facilitates provider's management and provides on-demand virtual environments, which are isolated and consolidated in order to achieve a better utilization of the provider's resources. However, dealing with some virtualization capabilities, such as the creation of virtual environments, implies an effort for the user in order to take benefit from them. In order to avoid this problem, we are contributing the research community with the EMOTIVE (Elastic Management of Tasks in Virtualized Environments) middleware, which allows executing tasks and providing virtualized environments to the users without any extra effort in an efficient way. This is a virtualized environment manager which aims to provide virtual machines that fulfils with the user requirements in terms of software and system capabilities. Furthermore, it supports fine-grained local resource management and provides facilities for developing scheduling policies such as migration and checkpointing.Postprint (published version

    Tweet-SCAN: an event discovery technique for geo-located tweets

    Get PDF
    Twitter has become one of the most popular Location-based Social Networks (LBSNs) that bridges physical and virtual worlds. Tweets, 140-character-long messages, are aimed to give answer to the What’s happening? question. Occurrences and events in the real life (such as political protests, music concerts, natural disasters or terrorist acts) are usually reported through geo-located tweets by users on site. Uncovering event-related tweets from the rest is a challenging problem that necessarily requires exploiting different tweet features. With that in mind, we propose Tweet-SCAN, a novel event discovery technique based on the popular density-based clustering algorithm called DBSCAN. Tweet-SCAN takes into account four main features from a tweet, namely content, time, location and user to group together event-related tweets. The proposed technique models textual content through a probabilistic topic model called Hierarchical Dirichlet Process and introduces Jensen–Shannon distance for the task of neighborhood identification in the textual dimension. As a matter of fact, we show Tweet-SCAN performance in two real data sets of geo-located tweets posted during Barcelona local festivities in 2014 and 2015, for which some of the events were identified by domain experts beforehand. Through these tagged data sets, we are able to assess Tweet-SCAN capabilities to discover events, justify using a textual component and highlight the effects of several parameters.Peer ReviewedPostprint (author's final draft

    Mining urban events from the tweet stream through a probabilistic mixture model

    Get PDF
    The geographical identification of content in Social Networks have enabled to bridge the gap between online social platforms and the physical world. Although vast amounts of data in such networks are due to breaking news or global occurrences, local events witnessed by users in situ are also present in these streams and of great importance for many city entities. Nowadays, unsupervised machine learning techniques, such as Tweet-SCAN, are able to retrospectively detect these local events from tweets. However, these approaches have limited abilities to reason about unseen observations in a principled way due to the lack of a proper probabilistic foundation. Probabilistic models have also been proposed for the task, but their event identification capabilities are far from those of Tweet-SCAN. In this paper, we identify two key factors which, when combined, boost the accuracy of such models. As a first key factor, we notice that the large amount of meaningless social data requires explicitly modeling non-event observations.Therefore, we propose to incorporate a background model that captures spatio-temporal fluctuations of non-event tweets. As a second key factor, we observe that the shortness of tweets hampers the application of traditional topic models. Thus, we integrate event detection and topic modeling, assigning topic proportions to events instead of assigning them to individual tweets. As a result, we propose Warble, a new probabilistic model and learning scheme for retrospective event detection that incorporates these two key factors. We evaluate Warble in a data set of tweets located in Barcelona during its festivities. The empirical results show that the model outperforms other state-of-the-art techniques in detecting various types of events while relying on a principled probabilistic framework that enables to reason under uncertainty.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft
    corecore