489 research outputs found
New features of modulational instability of partially coherent light; importance of the incoherence spectrum
It is shown that the properties of the modulational instability of partially
coherent waves propagating in a nonlinear Kerr medium depend crucially on the
profile of the incoherent field spectrum. Under certain conditions, the
incoherence may even enhance, rather than suppress, the instability. In
particular, it is found that the range of modulationally unstable wave numbers
does not necessarily decrease monotonously with increasing degree of
incoherence and that the modulational instability may still exist even when
long wavelength perturbations are stable.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Inflation from Susy quantum cosmology
We propose a realization of inverted hybrid inflation scenario in the context
of n=2 supersymmetric quantum cosmology. The spectrum of density fluctuations
is calculated in the de Sitter regimen as a function of the gravitino and the
Planck mass, and explicit forms for the wave function of the universe are found
in the WKB regimen for a FRW closed and flat universes.Comment: 9 pages, one figure, to appear in Phys. Rev.
Stationary Configurations Imply Shift Symmetry: No Bondi Accretion for Quintessence / k-Essence
In this paper we show that, for general scalar fields, stationary
configurations are possible for shift symmetric theories only. This symmetry
with respect to constant translations in field space should either be manifest
in the original field variables or reveal itself after an appropriate field
redefinition. In particular this result implies that neither k-Essence nor
Quintessence can have exact steady state / Bondi accretion onto Black Holes. We
also discuss the role of field redefinitions in k-Essence theories. Here we
study the transformation properties of observables and other variables in
k-Essence and emphasize which of them are covariant under field redefinitions.
Finally we find that stationary field configurations are necessarily linear in
Killing time, provided that shift symmetry is realized in terms of these field
variables.Comment: 8 page
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
Sub- and above barrier fusion of loosely bound Li with Si
Fusion excitation functions are measured for the system Li+Si
using the characteristic -ray method, encompassing both the sub-barrier
and above barrier regions, viz., = 7-24 MeV. Two separate experiments
were performed, one for the above barrier region (= 11-24 MeV) and
another for the below barrier region (= 7-10 MeV). The results were
compared with our previously measured fusion cross section for the
Li+Si system. We observed enhancement of fusion cross section at
sub-barrier regions for both Li and Li, but yield was substantially
larger for Li. However, for well above barrier regions, similar type of
suppression was identified for both the systems.Comment: 8 pages, 6 figures, as accepted for publication in Eur.Phys.J.
Energetics, forces, and quantized conductance in jellium modeled metallic nanowires
Energetics and quantized conductance in jellium modeled nanowires are
investigated using the local density functional based shell correction method,
extending our previous study of uniform in shape wires [C. Yannouleas and U.
Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable
shaped constricted region. The energetics of the wire (sodium) as a function of
the length of the volume conserving, adiabatically shaped constriction leads to
formation of self selecting magic wire configurations. The variations in the
energy result in oscillations in the force required to elongate the wire and
are directly correlated with the stepwise variations of the conductance of the
nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and
forces, and the correlated stepwise variation in the conductance are shown,
numerically and through a semiclassical analysis, to be dominated by the
quantized spectrum of the transverse states at the narrowmost part of the
constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure
Tunneling of quantum rotobreathers
We analyze the quantum properties of a system consisting of two nonlinearly
coupled pendula. This non-integrable system exhibits two different symmetries:
a permutational symmetry (permutation of the pendula) and another one related
to the reversal of the total momentum of the system. Each of these symmetries
is responsible for the existence of two kinds of quasi-degenerated states. At
sufficiently high energy, pairs of symmetry-related states glue together to
form quadruplets. We show that, starting from the anti-continuous limit,
particular quadruplets allow us to construct quantum states whose properties
are very similar to those of classical rotobreathers. By diagonalizing
numerically the quantum Hamiltonian, we investigate their properties and show
that such states are able to store the main part of the total energy on one of
the pendula. Contrary to the classical situation, the coupling between pendula
necessarily introduces a periodic exchange of energy between them with a
frequency which is proportional to the energy splitting between
quasi-degenerated states related to the permutation symmetry. This splitting
may remain very small as the coupling strength increases and is a decreasing
function of the pair energy. The energy may be therefore stored in one pendulum
during a time period very long as compared to the inverse of the internal
rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl
Recent experimental results in sub- and near-barrier heavy ion fusion reactions
Recent advances obtained in the field of near and sub-barrier heavy-ion
fusion reactions are reviewed. Emphasis is given to the results obtained in the
last decade, and focus will be mainly on the experimental work performed
concerning the influence of transfer channels on fusion cross sections and the
hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier
fusion taught us that cross sections may strongly depend on the low-energy
collective modes of the colliding nuclei, and, possibly, on couplings to
transfer channels. The coupled-channels (CC) model has been quite successful in
the interpretation of the experimental evidences. Fusion barrier distributions
often yield the fingerprint of the relevant coupled channels. Recent results
obtained by using radioactive beams are reported. At deep sub-barrier energies,
the slope of the excitation function in a semi-logarithmic plot keeps
increasing in many cases and standard CC calculations over-predict the cross
sections. This was named a hindrance phenomenon, and its physical origin is
still a matter of debate. Recent theoretical developments suggest that this
effect, at least partially, may be a consequence of the Pauli exclusion
principle. The hindrance may have far-reaching consequences in astrophysics
where fusion of light systems determines stellar evolution during the carbon
and oxygen burning stages, and yields important information for exotic
reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ
Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-
We observes a signal for the double charm baryon Xi_cc+ in the charged decay
mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ ->
Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment
(E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events
over an expected background estimated by event mixing to be 1.38+/-0.13 events.
The Poisson probability that a background fluctuation can produce the apparent
signal is less than 6.4E-4. The observed mass of this state is
(3518+/-3)MeV/c^2, consistent with the published result. Averaging the two
results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak
decay mode confirms the previous SELEX suggestion that this state is a double
charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+
-> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical
method to determine significance of observation. Submitted to PL
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
- …