2,096 research outputs found

    A homogeneous spectroscopic analysis of host stars of transiting planets

    Full text link
    The analysis of transiting extra-solar planets provides an enormous amount of information about the formation and evolution of planetary systems. A precise knowledge of the host stars is necessary to derive the planetary properties accurately. The properties of the host stars, especially their chemical composition, are also of interest in their own right. Information about planet formation is inferred by, among others, correlations between different parameters such as the orbital period and the metallicity of the host stars. The stellar properties studied should be derived as homogeneously as possible. The present work provides new, uniformly derived parameters for 13 host stars of transiting planets. Effective temperature, surface gravity, microturbulence parameter, and iron abundance were derived from spectra of both high signal-to-noise ratio and high resolution by assuming iron excitation and ionization equilibria. For some stars, the new parameters differ from previous determinations, which is indicative of changes in the planetary radii. A systematic offset in the abundance scale with respect to previous assessments is found for the TrES and HAT objects. Our abundance measurements are remarkably robust in terms of the uncertainties in surface gravities. The iron abundances measured in the present work are supplemented by all previous determinations using the same analysis technique. The distribution of iron abundance then agrees well with the known metal-rich distribution of planet host stars. To facilitate future studies, the spectroscopic results of the current work are supplemented by the findings for other host stars of transiting planets, for a total dataset of 50 objects.Comment: accepted for publication in A&A, 7 pages, 6 figure

    The Hydroxylase Inhibitor Dimethyloxallyl Glycine Attenuates Endotoxic Shock Via Alternative Activation of Macrophages and IL-10 Production by B1 Cells

    Get PDF
    Localized tissue hypoxia is a feature of infection and inflammation, resulting in the upregulation of the transcription factors HIF-1α and NF-κB via inhibition of oxygen sensing hydroxylase enzymes. Previous studies have demonstrated a beneficial role for the hydroxylase inhibitor dimethyloxallyl glycine (DMOG) in inflammatory conditions, including experimental colitis, by regulating the activity of HIF-1 and NF-κB. We have demonstrated in vivo that pre-treatment with DMOG attenuates systemic LPS-induced activation of the NF-κB pathway. Furthermore, mice treated with DMOG had significantly increased survival in LPS-induced shock. Conversely, in models of polymicrobial sepsis, DMOG exacerbates disease severity. DMOG treatment of mice promotes M2 polarization in macrophages within the peritoneal cavity, resulting in the downregulation of pro-inflammatory cytokines such as TNFα. In addition, in vivo DMOG treatment upregulates IL-10 expression, specifically in the peritoneal B-1 cell population. This study demonstrates cell type specific roles for hydroxylase inhibition in vivo and provides insight into the mechanism underlying the protection conveyed by DMOG in models of endotoxic shock

    The 0.5MJ transiting exoplanet WASP-13b

    Get PDF
    We report the discovery of WASP-13b, a low-mass M_{\rm p} = 0.46 ^_~M_J transiting exoplanet with an orbital period of 4.35298 ±\pm 0.00004 days. The transit has a depth of 9 mmag, and although our follow-up photometry does not allow us to constrain the impact parameter well (0 < b < 0.46), with radius in the range RpR_{\rm p} ~ 1.06-1.21 RJ the location of WASP-13b in the mass-radius plane is nevertheless consistent with H/He-dominated, irradiated, low core mass and core-free theoretical models. The G1V host star is similar to the Sun in mass (M__ ~M_{\odot}) and metallicity ([M/H] = 0.0±\pm0.2), but is possibly older ( 8.5^_{\rm -4.9} Gyr)

    miRIAD-integrating microRNA inter- and intragenic data

    Get PDF
    MicroRNAs (miRNAs) are a class of small (similar to 22 nucleotides) non-coding RNAs that post-transcriptionally regulate gene expression by interacting with target mRNAs. A majority of miRNAs is located within intronic or exonic regions of protein-coding genes (host genes), and increasing evidence suggests a functional relationship between these miRNAs and their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of genomic and structural features of intragenic miRNAs and their host genes for five species (human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic classification of all miRNAs (inter-and intragenic), as well as classification of all protein-coding genes into host or non-host genes (depending on whether they contain an intragenic miRNA or not). We collected and processed public data from several sources to provide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host gene function, genomic context, names of and references to intragenic miRNAs, miRNA binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across different tissues and expression correlation for intragenic miRNAs and their host genes. Protein-protein interaction data are also presented for functional network analysis of host genes. In summary, miRIAD was designed to help the research community to explore, in a user-friendly environment, intragenic miRNAs, their host genes and functional annotations with minimal effort, facilitating hypothesis generation and in-silico validations

    miRIAD-integrating microRNA inter- and intragenic data

    Get PDF
    MicroRNAs (miRNAs) are a class of small (similar to 22 nucleotides) non-coding RNAs that post-transcriptionally regulate gene expression by interacting with target mRNAs. A majority of miRNAs is located within intronic or exonic regions of protein-coding genes (host genes), and increasing evidence suggests a functional relationship between these miRNAs and their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of genomic and structural features of intragenic miRNAs and their host genes for five species (human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic classification of all miRNAs (inter-and intragenic), as well as classification of all protein-coding genes into host or non-host genes (depending on whether they contain an intragenic miRNA or not). We collected and processed public data from several sources to provide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host gene function, genomic context, names of and references to intragenic miRNAs, miRNA binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across different tissues and expression correlation for intragenic miRNAs and their host genes. Protein-protein interaction data are also presented for functional network analysis of host genes. In summary, miRIAD was designed to help the research community to explore, in a user-friendly environment, intragenic miRNAs, their host genes and functional annotations with minimal effort, facilitating hypothesis generation and in-silico validations

    Comorbidity and Sex-Related Differences in Mortality in Oxygen-Dependent Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: It is not known why survival differs between men and women in oxygen-dependent chronic obstructive pulmonary disease (COPD). The present study evaluates differences in comorbidity between men and women, and tests the hypothesis that comorbidity contributes to sex-related differences in mortality in oxygen-dependent COPD. Methods: National prospective study of patients aged 50 years or older, starting long-term oxygen therapy (LTOT) for COPD in Sweden between 1992 and 2008. Comorbidities were obtained from the Swedish Hospital Discharge Register. Sex-related differences in comorbidity were estimated using logistic regression, adjusting for age, smoking status and year of inclusion. The effect of comorbidity on overall mortality and the interaction between comorbidity and sex were evaluated using Cox regression, adjusting for age, sex, Pa O2 breathing air, FEV 1, smoking history and year of inclusion. Results: In total, 8,712 patients (55 % women) were included and 6,729 patients died during the study period. No patient was lost to follow-up. Compared with women, men had significantly more arrhythmia, cancer, ischemic heart disease and renal failure, and less hypertension, mental disorders, osteoporosis and rheumatoid arthritis (P,0.05 for all odds ratios). Comorbidity was an independent predictor of mortality, and the effect was similar for the sexes. Women had lower mortality, which remained unchanged even after adjusting for comorbidity; hazard ratio 0.73 (95 % confidence interval, 0.68–0.77; P,0.001)

    Cell cycle control and HIV-1 susceptibility are linked by CDK6-Dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells

    Get PDF
    Proliferating cells are preferentially susceptible to infection by retroviruses. Sterile α motif and HD domain-containing protein-1 (SAMHD1) is a recently described deoxynucleotide phosphohydrolase controlling the size of the intracellular deoxynucleotide triphosphate (dNTP) pool, a limiting factor for retroviral reverse transcription in noncycling cells. Proliferating (Ki67+) primary CD4+ T cells or macrophages express a phosphorylated form of SAMHD1 that corresponds with susceptibility to infection in cell culture. We identified cyclin-dependent kinase (CDK) 6 as an upstream regulator of CDK2 controlling SAMHD1 phosphorylation in primary T cells and macrophages susceptible to infection by HIV-1. In turn, CDK2 was strongly linked to cell cycle progression and coordinated SAMHD1 phosphorylation and inactivation. CDK inhibitors specifically blocked HIV-1 infection at the reverse transcription step in a SAMHD1-dependent manner, reducing the intracellular dNTP pool. Our findings identify a direct relationship between control of the cell cycle by CDK6 and SAMHD1 activity, which is important for replication of lentiviruses, as well as other viruses whose replication may be regulated by intracellular dNTP availability. © 2014 by The American Association of Immunologists, Inc

    Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    Get PDF
    We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added. Matches published version JCAP 02 (2016) 03

    Induction of otic structures by canonical Wnt signalling in medaka

    Get PDF
    The Wnt family of signalling proteins is known to participate in multiple developmental decisions during embryogenesis. We misexpressed Wnt1 in medaka embryos and observed anterior truncations, similar to those described for ectopic activation of canonical Wnt signalling in other species. Interestingly, when we induced a heat-shock Wnt1 transgenic line exactly at 30% epiboly, we observed multiple ectopic otic vesicles in the truncated embryos. The vesicles then fused, forming a single large ear structure. These “cyclopic ears” filled the complete anterior region of the embryos. The ectopic induction of otic development can be explained by the juxtaposition of hindbrain tissue with anterior ectoderm. Fibroblast growth factor (Fgf) ligands are thought to mediate the otic-inducing properties of the hindbrain. However, signals different from Fgf3 and Fgf8 are necessary to explain the formation of the ectopic ear structures, suggesting that Wnt signalling is involved in the otic induction process in medaka
    corecore