939 research outputs found
Microlensing by natural wormholes: theory and simulations
We provide an in depth study of the theoretical peculiarities that arise in
effective negative mass lensing, both for the case of a point mass lens and
source, and for extended source situations. We describe novel observational
signatures arising in the case of a source lensed by a negative mass. We show
that a negative mass lens produces total or partial eclipse of the source in
the umbra region and also show that the usual Shapiro time delay is replaced
with an equivalent time gain. We describe these features both theoretically, as
well as through numerical simulations. We provide negative mass microlensing
simulations for various intensity profiles and discuss the differences between
them. The light curves for microlensing events are presented and contrasted
with those due to lensing produced by normal matter. Presence or absence of
these features in the observed microlensing events can shed light on the
existence of natural wormholes in the Universe.Comment: 16 pages, 24 postscript figures (3 coloured), revtex style, submitted
to Phys. Rev.
Dirac-like Monopoles in Three Dimensions and Their Possible Influences on the Dynamics of Particles
Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and
Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed
through a dimensional reduction of four-dimensional electrodynamics with
electric and magnetic sources. Some general properties and similarities of them
when are considered in Minkowski or Euclidian space are mentioned. However, by
virtue of the structure of the space-time in which they are considered a number
of differences among them take place. Furthermore, we pay attention to some
consequences of these objects when acting upon usual particles. Among other
subjects, special attention is given to the study of a Lorentz-violating
non-minimal coupling between neutral fermions and the field generated by a
monopole alone. In addition, an analogue of the Aharonov-Casher effect is
discussed in this framework.Comment: 20 pages. Latex format. No figures. Accepted for publication in Phys.
Rev.
Higher-order variational problems of Herglotz type
We obtain a generalized Euler–Lagrange differential equation and transversality optimality conditions for Herglotz-type higher-order variational problems. Illustrative examples of the new results are given
The clustering of ultra-high energy cosmic rays and their sources
The sky distribution of cosmic rays with energies above the 'GZK cutoff'
holds important clues to their origin. The AGASA data, although consistent with
isotropy, shows evidence for small-angle clustering, and it has been argued
that such clusters are aligned with BL Lacertae objects, implicating these as
sources. It has also been suggested that clusters can arise if the cosmic rays
come from the decays of very massive relic particles in the Galactic halo, due
to the expected clumping of cold dark matter. We examine these claims and show
that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.
Energetics, forces, and quantized conductance in jellium modeled metallic nanowires
Energetics and quantized conductance in jellium modeled nanowires are
investigated using the local density functional based shell correction method,
extending our previous study of uniform in shape wires [C. Yannouleas and U.
Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable
shaped constricted region. The energetics of the wire (sodium) as a function of
the length of the volume conserving, adiabatically shaped constriction leads to
formation of self selecting magic wire configurations. The variations in the
energy result in oscillations in the force required to elongate the wire and
are directly correlated with the stepwise variations of the conductance of the
nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and
forces, and the correlated stepwise variation in the conductance are shown,
numerically and through a semiclassical analysis, to be dominated by the
quantized spectrum of the transverse states at the narrowmost part of the
constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure
Partitioning the effects of habitat loss hunting and climate change on the endangered Chacoan peccary
Aim: Land-use change and overexploitation are major threats to biodiversity, and cli mate change will exert additional pressure in the 21st century. Although there are strong interactions between these threats, our understanding of the synergistic and compensatory effects on threatened species' range geography remains limited. Our aim was to disentangle the impact of habitat loss, hunting and climate change on spe cies, using the example of the endangered Chacoan peccary (Catagonus wagneri). Location: Gran Chaco ecoregion in South America.
Methods: Using a large occurrence database, we integrated a time-calibrated species distribution model with a hunting pressure model to reconstruct changes in the distri bution of suitable peccary habitat between 1985 and 2015. We then used partitioning analysis to attribute the relative contribution of habitat change to land-use conver sion, climate change and varying hunting pressure.
Results: Our results reveal widespread habitat deterioration, with only 11% of the habitat found in 2015 considered suitable and safe. Hunting pressure was the strong est single threat, yet most habitat deterioration (58%) was due to the combined, rather than individual, effects of the three drivers we assessed. Climate change would have led to a compensatory effect, increasing suitable habitat area, yet this effect was ne gated by the strongly negative and interacting threats of land-use change and hunting.
Main Conclusions: Our study reveals the central role of overexploitation, which is often neglected in biogeographic assessments, and suggests that addressing overex ploitation has huge potential for increasing species' adaptive capacity in the face of climate and land-use change. More generally, we highlight the importance of jointly assessing extinction drivers to understand how species might fare in the 21st century. Here, we provide a simple and transferable framework to determine the separate and joint effects of three main drivers of biodiversity loss.Fil: Torres, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Diversidad y Ecología Animal ; Argentina.Fil: Kuemmerle, Tobias. Humboldt-University Berlin. Integrative Research Institute for Transformations in Human Environment Systems. Geography Department; AlemaniaFil: Baumann, Matthias. Humboldt-University. Geography Department; Alemania.Fil: Romero Muñoz, Alfredo. Humboldt University. Geography Departament; Alemania. University of British Columbia. Institute for Resources, Environment and Sustainability (IRES); Canada. Helmholtz Centre for Environmental Research. Department Computational Landscape Ecology; Alemania. Transformations of Human-Environment Systems (IRI THESys). Integrative Research Institute; AlemaniaFil: Altrichter, Mariana. IUCN SSC Peccary Specialist Group; Suiza. Prescott College. Environmental Studies; Estados UnidosFil: Boaglio, Gabriel Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Cabral, Hugo. Universidade Estadual Paulista. Programa de Pós-Graduação em Biologia Animal; Brasil. Instituto de Investigación Biológica del Paraguay; ParaguayFil: Camino, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Ecología del Litoral. Laboratorio de Biología de la Conservación; ArgentinaFil: Campos Kraver, Juan M. University of Florida. College of Veterinary Medicine & Department of Wildlife Ecology and Conservation. Department of Large Animal Clinical Sciences; Estados UnidosFil: Giordano, Anthony. Society for the Preservation of Endangered Carnivores and their International Ecological Study (S.P.E.C.I.E.S); Estados Unidos. University of Los Angeles. Institute of the Environment and Sustainability. Center for Tropical Research; Estados UnidosFil: Cartes, José L. Guyra Paraguay, Parque del Río; ParaguayFil: Cuéllar, Rosa L. Fundación para la Conservación del Bosque Chiquitano; BoliviaFil: Decarre, Julieta. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Gallegos, Marcelo. Provincia de Salta. Secretaría de Ambiente; ArgentinaFil: Lizárraga, Leónidas. Administración De Parques Nacionales. Dirección Regional Noroeste. Salta; Argentina.Fil: Maffei, Leonardo. Biósfera Consultores Ambientales, Lima, Perú.Fil: Neris, Nora N. Secretaria del Ambiente; ParaguayFil: Quiroga, Verónica. Universidad Nacional de Córdoba. Inst. de Diversidad y Ecología Animal (IDEA – CONICET), Centro de Zoología Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saldivar, Silvia. ITAIPU Binacional. Dirección de Coordinación. División de Áreas Protegidas; ParaguayFil: Tamburini, Daniela Maria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Ecología y Recursos Naturales Renovables; Argentin
World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) : third edition of the guideline for evaluating efficacy of anthelmintics in ruminants (bovine, ovine, caprine)
This guideline is aimed at those who are involved in the assessment of anthelmintic efficacy in ruminant livestock species (bovine, ovine and caprine). The intent is to provide a framework that can be adopted worldwide for the testing of anthelmintics in ruminants, such that studies carried out in different countries can be compared and thereby unnecessary duplication can be reduced. Recommendations are made for the selection, housing and feeding of study animals, the type of studies required, the method used to conduct those studies, the assessment of results and the standards for defining anthelmintic efficacy.https://www.elsevier.com/locate/vetparhj2024Veterinary Tropical DiseasesSDG-03:Good heatlh and well-bein
Methane sources in gas hydrate-bearing cold-seeps : evidence from radiocarbon and stable isotopes
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 115 (2009): 102-109, doi:10.1016/j.marchem.2009.07.001.Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations.
In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2 percent modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 meters of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.This work was supported by the Office of Naval Research and Naval Research
Laboratory (NRL). Partial support was also provided by
the USGS Mendenhall Postdoctoral Research Fellowship Program to JWP, and NSF
Chemical Oceanography (OCE-0327423) and Integrated Carbon Cycle Research (EAR-
0403949) program support to JEB
- …