49 research outputs found

    Targeting Cell Division Cycle 25 Homolog B To Regulate Influenza Virus Replication

    Get PDF
    Influenza virus is a worldwide global health concern causing seasonal morbidity mortality and economic burden. Chemotherapeutics is available; however, rapid emergence of drug-resistant influenza virus strains has reduced its efficacy. Thus, there is a need to discover novel antiviral agents. in this study, RNA interference (RNAi) was used to screen host genes required for influenza virus replication. One pro-influenza virus host gene identified was dual-specificity phosphatase cell division cycle 25 B (CDC25B). RNAi screening of CDC25B resulted in reduced influenza A virus replication, and a CDC25B small-molecule inhibitor (NSC95397) inhibited influenza A virus replication in a dose-dependent fashion. Viral RNA synthesis was reduced by NSC95397 in favor of increased beta interferon (IFN-beta) expression, and NSC95397 was found to interfere with nuclear localization and chromatin association of NS1, an influenza virus protein. As NS1 has been shown to be chromatin associated and to suppress host transcription, it is likely that CDC25B supports NS1 nuclear function to hijack host transcription machinery in favor of viral RNA synthesis, a process that is blocked by NSC95397. Importantly, NSC95397 treatment protects mice against lethal influenza virus challenge. the findings establish CDC25B as a pro-influenza A virus host factor that may be targeted as a novel influenza A therapeutic strategy.National Institutes of Health, National Institute of Allergy and Infectious DiseasesGeorgia Research AllianceUniv Georgia, Coll Vet Med, Dept Infect Dis, Athens, GA 30602 USAUniversidade Federal de São Paulo, UNIFESP, Dept Biol Sci, São Paulo, BrazilUniversidade Federal de São Paulo, UNIFESP, Dept Biol Sci, São Paulo, BrazilNational Institutes of Health, National Institute of Allergy and Infectious Diseases: HHSN266200700006CWeb of Scienc

    The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice

    Get PDF
    The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.FAPESPFIOCRUZCNP

    Role of the gp85/Trans-Sialidases in Trypanosoma cruzi Tissue Tropism: Preferential Binding of a Conserved Peptide Motif to the Vasculature in Vivo

    Get PDF
    Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. the reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature.Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. for that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied.Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniv São Paulo, Inst Quim, Dept Bioquim, BR-01498 São Paulo, BrazilUniv Texas MD Anderson Canc Ctr, David H Koch Ctr, Houston, TX 77030 USAUniv Texas MD Anderson Canc Ctr, Dept Canc Biol, Houston, TX 77030 USAUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilFAPESP: 2004/03303-5FAPESP: 2008/54.806-8Web of Scienc

    NAIP/NLRC4 inflammasome participates in macrophage responses to Trypanosoma cruzi by a mechanism that relies on cathepsin-dependent caspase-1 cleavage

    Get PDF
    Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1β and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4-/- and Nlrp3-/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1β and NO release, mirroring the phenotype observed in Nlrc4-/-/Nlrp3-/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections

    Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Get PDF
    Parasitic diseases cause similar to 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. (C) 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology.National Institutes of HealthStanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USAUniv Sao Paulo, Inst Quim, Dept Bioquim, BR-05508 Sao Paulo, SP, BrazilMcGill Univ, Res Inst, Natl Reference Ctr Parasitol, Montreal, PQ, CanadaUniv Autonoma Yucatan, Ctr Invest Reg Dr Hideyo Noguchi, Parasitol Lab, Merida, Yucatan, MexicoStanford Univ, Biomat & Adv Drug Delivery Lab, Stanford, CA 94305 USAUniv Estadual Campinas, Inst Chem, Campinas, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Biol, Campus Diadema, Sao Paulo, BrazilMcGill Univ, Inst Parasitol, Quebec City, PQ, CanadaMcGill Univ, Ctr Host Parasite Interact, Quebec City, PQ, CanadaUniv Fed Sao Paulo, Dept Ciencias Biol, Campus Diadema, Sao Paulo, BrazilNIH: TW008781-01C-IDEANIH: AI078505Web of Scienc

    Extracellular Vesicles Released by Leishmania (Leishmania) amazonensis Promote Disease Progression and Induce the Production of Different Cytokines in Macrophages and B-1 Cells

    Get PDF
    The extracellular vesicles (EVs) released by Leishmania can contribute to the establishment of infection and host immunomodulation. In this study, we characterized the shedding of EVs from Leishmania (Leishmania) amazonensis promastigotes. This species is the causative agent of cutaneous leishmaniasis, and its role during interactions with bone marrow-derived macrophages (BMDMs) and peritoneal B-1 cells was evaluated. Leishmania amazonensis promastigotes cultivated in vitro at different times and temperatures spontaneously released EVs. EVs were purified using size-exclusion chromatography (SEC) and quantitated by nanoparticle tracking analysis (NTA). NTA revealed that the average size of the EVs was approximately 180 nm, with concentrations ranging from 1.8 × 108 to 2.4 × 109 vesicles/mL. In addition, the presence of LPG and GP63 were detected in EVs obtained at different temperatures. Naïve BMDMs stimulated with EVs exhibited increased IL-10 and IL-6 expression. However, incubating B-1 cells with parasite EVs did not stimulate IL-10 expression but led to an increase in the expression of IL-6 and TNFα. After 7 weeks post-infection, animals infected with L. amazonensis promastigotes in the presence of parasite EVs had significant higher parasite load and a polarization to Th2 response, as compared to the group infected with the parasite alone. This work demonstrated that EVs isolated from L. amazonensis promastigotes were able to stimulate macrophages and B-1 cells to express different types of cytokines. Moreover, the immunomodulatory properties of EVs probably contributed to an increase in parasite burden in mice. These findings suggest that the functionality of L. amazonensis EVs on immune system favor of parasite survival and disease progression

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore