15 research outputs found
Future trends in Animal Breeding due to new genetic tecnologies
The Darwin theory of evolution by natural selection is based on three principles: (a) variation; (b) inheritance; and (c) natural selection. Here, I take these principles as an excuse to review some topics related to the future research prospects in Animal Breeding. With respect to the first principle I describe two forms of variation different from mutation that are becoming increasingly important: variation in copy number and microRNAs. With respect to the second principle I comment on the possible relevance of non-mendelian inheritance, the so-called epigenetic effects, of which the genomic imprinting is the best characterized in domestic species. Regarding selection principle I emphasize the importance of selection for social traits and how this could contribute to both productivity and animal welfare. Finally, I analyse the impact of molecular biology in Animal Breeding, the achievements and limitations of quantitative trait locus and classical marker-assisted selection and the future of genomic selectio
Depuración genética de poblaciones mediante marcadores diagnóstico
La pérdida de diversidad genética, que conlleva descensos en eficacia biológica y pérdida de adaptabilidad, suele considerarse un fenómeno a evitar. Sin embargo determinadas poblaciones requieren la preservación del fondo genético diferenciado de otros grupos: han de ser mantenidas en pureza. El motivo puede ser económico: razas que proporcionan productos de interés (como los cerdos ibéricos o bovinos de raza Reggiana; Dalvit et al., 2007) razas, como en perros, que no se cruzan por motivos estéticos (Parker et al., 2004), etc. También en especies o razas salvajes amenazadas por su equivalente doméstico tiene interés el mantenimiento de su base genética diferenciada (Rhymer y Simberloff 1996; Allendorf et al., 2001). Si tenemos una población de interés que se ha cruzado (bien por error o por mala gestión) con otra y queremos recuperar su fondo genético original, tendremos que llevar a cabo un proceso de desintrogresión. Por ejemplo, poblaciones que quieren recuperarse a través de un banco de semen requieren la utilización de hembras de otra población cuyo fondo genético habrÃa de ser eliminado (Hall y Bradley 199
Past, present and future of epigenetics applied to livestock breeding
This article reviews the concept of Lamarckian inheritance and the use of the term epigenetics in the field of animal genetics. Epigenetics was first coined by Conrad Hal Waddington (1905–1975), who derived the term from the Aristotelian word epigenesis. There exists some controversy around the word epigenetics and its broad definition. It includes any modification of the expression of genes due to factors other than mutation in the DNA sequence. This involves DNA methylation, post-translational modification of histones, but also linked to regulation of gene expression by non-coding RNAs, genome instabilities or any other force that could modify a phenotype. There is little evidence of the existence of transgenerational epigenetic inheritance in mammals, which may commonly be confounded with environmental forces acting simultaneously on an individual, her developing fetus and the germ cell lines of the latter, although it could have an important role in the cellular energetic status of cells. Finally, we review some of the scarce literature on the use of epigenetics in animal breeding programs
Información molecular vs información genealógica en la gestión de poblaciones
Tanto en el campo de la conservación como en el de la mejora genética, se han propuesto diversos métodos para gestionar una población controlando la pérdida de diversidad genética. En poblaciones no subdivididas, el método aceptado es determinar la contribución de cada posible padre (i.e., el número de descendientes que cada individuo deja a la siguiente generación), minimizando el parentesco global de los padres ponderado por estas contribuciones (Meuwissen, 1997; Grundy et al., 1998; Fernández et al., 2003). Los coeficientes de parentesco se obtienen normalmente de la genealogÃa, y en dicho caso, se optimiza el parentesco global genealógico. Sin embargo, la información genealógica no está siempre disponible, en cuyo caso se pueden usar marcadores moleculares para calcular el parentesco molecular o estimar el parentesco genealógico (Toro et al., 2009). AsÃ, cuando no se dispone de genealogÃas, se puede minimizar el parentesco molecular global o el parentesco global genealógico estimado con los marcadores. Fernández et al. (2005) estudiaron mediante simulaciones la capacidad de la información molecular de reemplazar a la información genealógica, y concluyeron que el uso exclusivo de información molecular era claramente insuficiente. En dicho estudio, los autores se basaron en un número limitado de marcadores microsatélites, del orden de decenas. En la actualidad, gracias a los métodos de secuenciación de última generación, disponemos de miles de marcadores de tipo SNP, lo que hace necesaria una revisión de aquellas investigaciones que concluÃan que la utilidad de la información molecular era limitada e inferior a la genealógica. En este estudio, reevaluamos vÃa simulaciones la capacidad de la información genómica de reemplazar a la información genealógica para mantener diversidad genética en programas de conservación, usando un número de SNPs en lÃnea con los datos actualmente disponible
Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress
The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program
Detection of growth-related QTLs in turbot (Scophtalmus maximux)
Background The turbot (Scophthalmus maximus) is a highly appreciated European aquaculture species. Growth related traits constitute the main goal of the ongoing genetic breeding programs of this species. The recent construction of a consensus linkage map in this species has allowed the selection of a panel of 100 homogeneously distributed markers covering the 26 linkage groups (LG) suitable for QTL search. In this study we addressed the detection of QTL with effect on body weight, length and Fulton's condition factor.
Results Eight families from two genetic breeding programs comprising 814 individuals were used to search for growth related QTL using the panel of microsatellites available for QTL screening. Two different approaches, maximum likelihood and regression interval mapping, were used in order to search for QTL. Up to eleven significant QTL were detected with both methods in at least one family: four for weight on LGs 5, 14, 15 and 16; five for length on LGs 5, 6, 12, 14 and 15; and two for Fulton's condition factor on LGs 3 and 16. In these LGs an association analysis was performed to ascertain the microsatellite marker with the highest apparent effect on the trait, in order to test the possibility of using them for marker assisted selection.
Conclusions The use of regression interval mapping and maximum likelihood methods for QTL detection provided consistent results in many cases, although the high variation observed for traits mean among families made it difficult to evaluate QTL effects. Finer mapping of detected QTL, looking for tightly linked markers to the causative mutation, and comparative genomics are suggested to deepen in the analysis of QTL in turbot so they can be applied in marker assisted selection programs
Variance and covariance of actual relationship between relatives at one locus.
The relationship between pairs of individuals is an important topic in many areas of population and quantitative genetics. It is usually measured as the proportion of thegenome identical by descent shared by the pair and it can be inferred from pedigree information. But there is a variance in actual relationships as a consequence of Mendelian sampling, whose general formula has not been developed. The goal of this work is to develop this general formula for the one-locus situation,. We provide simple expressions for the variances and covariances of all actual relationships in an arbitrary complex pedigree. The proposed method relies on the use of the nine identity coefficients and the generalized relationship coefficients; formulas have been checked by computer simulation. Finally two examples for a short pedigree of dogs and a long pedigree of sheep are given
Genome-Wiide estimates of coancestry, in breeding and effective population size in the Spanish Holstein population
Estimates of effective population size in the Holstein cattle breed have usually been low despite the large number of animals that constitute this breed. Effective population size is inversely related to the rates at which coancestry and inbreeding increase and these rates have been high as a consequence of intense and accurate selection. Traditionally, coancestry and inbreeding coefficients have been calculated from pedigree data. However, the development of genome-wide single nucleotide polymorphisms has increased the interest of calculating these coefficients from molecular data in order to improve their accuracy. In this study, genomic estimates of coancestry, inbreeding and effective population size were obtained in the Spanish Holstein population and then compared with pedigree-based estimates. A total of 11,135 animals genotyped with the Illumina BovineSNP50 BeadChip were available for the study. After applying filtering criteria, the final genomic dataset included 36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals included 31,203 animals. These individuals represented only the last five generations in order to homogenise the amount of pedigree information across animals. Genomic estimates of coancestry and inbreeding were obtained from identity by descent segments (coancestry) or runs of homozygosity (inbreeding). The results indicate that the percentage of variance of pedigree-based coancestry estimates explained by genomic coancestry estimates was higher than that for inbreeding. Estimates of effective population size obtained from genome-wide and pedigree information were consistent and ranged from about 66 to 79. These low values emphasize the need of controlling the rate of increase of coancestry and inbreeding in Holstein selection programmes
A short critical history of the application of genomics to animal breeding
[EN] Two scientific schools have been in coexistence from the beginning of genetics, one of them searching for factors of inheritance and the other one applying biometrical models to study the relationships between relatives. With the development of molecular genetics, the possibilities of detecting genes having a noticeable effect in traits augmented. Some genes with large or medium effects were localized in animals, although the most common result was to detect markers linked to these genes, allowing the possibility of assisting selection programs with markers. When a large amount of simple and inexpensive markers were available, the SNPs, new possibilities were opened since they did not need the presence of genes of large or medium effect controlling a trait, because the whole genome was scanned. Using a large amount of SNPs permits having a prediction of the breeding value at birth accurate enough to be used in some cases, like dairy cattle, to halve its generation interval. In other animal breeding programs, the implementation of genomic selection is less clear and the way in which it can be useful should be carefully studied. The need for large populations for associating phenotypic data and markers, plus the need for repeating the process continuously, complicates its application in some cases. The implementation of the information provided by the SNPs in current genetic programs has led to the development of complex statistical tools, joining the efforts of the two schools, factorial and biometrical, that nowadays work closely related. (C) 2014 Elsevier B.V. All rights reserved.This work was partially funded by the Ministerio de Economia y Competitividad, Spain (Projects AGL2011-29831-C03-01 and CGL2012-39861-C02-02). We are grateful to Dr. Saif Agha for his useful comments.Blasco Mateu, A.; Toro, MA. (2014). A short critical history of the application of genomics to animal breeding. Livestock Science. 166:4-9. doi:10.1016/j.livsci.2014.03.015S4916
¿Tiene sentido el concepto de censo efectivo con un manejo óptimo utilizando información molecular? = Does the concept of effective size make sense with optimal management using molecular information?
Uno de los conceptos clave en la genética de poblaciones es el censo efectivo (Ne). Aunque hay varias definiciones de A/e (Wang etal., 2016) aquà consideramos la definición de A/e como el número de individuos en una población ideal que tendrÃa la misma tasa de consanguinidad AF (o parentesco, Af) que la población considerada. Una propiedad importante de A/e es que, en una población no subdividida bajo un sistema de reproducción regular, alcanza un valor asintótico y que los censos efectivos de consanguinidad y de parentesco convergen. Por lo general, para monitorizar los programas de conservación utilizamos los datos genealógicos a través del cálculo de la tasa de consanguinidad {AFG) o, de manera equivalente, el censo efectivo (AfeG). En este contexto, existe un consenso de que el método óptimo para maximizar el NeG es calcular la contribución de cada padre potencial (el número de descendientes que cada individuo deja para la próxima generación) cuando se minimiza el parentesco genealógico global (fG) entre los padres potenciales ponderados por sus contribuciones (Fernández et al., 2011). Con las técnicas de genotipado de alta densidad, es posible genotipar miles de polimorfismos (SNPs). En esta nueva situación, el método óptimo para manejar la diversidad genética seguirá siendo el mismo, pero ahora el parentesco molecular (fm) sustituye al parentesco genealógico (de Cara et al., 2011). Sin embargo, este enfoque tiene algunas consecuencias sobre la evolución de la diversidad genética que cuestionan el significado y la utilidad del concepto de A/e. El objetivo de este estudio es comparar, mediante simulación, la evolución de la diversidad genética (y, por lo tanto, de A/e) cuando se realiza un manejo óptimo de la diversidad utilizando marcadores moleculares