10,282 research outputs found

    Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents.

    Get PDF
    Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as "charge immobilization" (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567-590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at -90 mV return potential changed from a single fast component to at least two components, the slower requiring approximately 200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at -120 and -90 mV. In contrast, at higher potentials (-70 and -50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of "parallel" inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region

    Multiphotons and Photon-Jets

    Full text link
    We discuss an extension of the Standard Model with a new vector-boson decaying predominantly into a multi-photon final state through intermediate light degrees of freedom. The model has a distinctive phase in which the photons are collimated. As such, they would fail the isolation requirements of standard multi-photon searches, but group naturally into a novel object, the photon-jet. Once defined, the photon-jet object facilitates more inclusive searches for similar phenomena. We present a concrete model, discuss photon-jets more generally, and outline some strategies that may prove useful when searching for such objects.Comment: 4 pages, 2 figure

    Break-up mechanisms in heavy ion collisions at low energies

    Full text link
    We investigate reaction mechanisms occurring in heavy ion collisions at low energy (around 20 MeV/u). In particular, we focus on the competition between fusion and break-up processes (Deep-Inelastic and fragmentation) in semi-peripheral collisions, where the formation of excited systems in various conditions of shape and angular momentum is observed. Adopting a Langevin treatment for the dynamical evolution of the system configuration, described in terms of shape observables such as quadrupole and octupole moments, we derive fusion/fission probabilities, from which one can finally evaluate the corresponding fusion and break-up cross sections. The dependence of the results on shape, angular momentum and excitation energy is discussed.Comment: submitted to Physical Review

    Fluidized bed as a solid precursor delivery system in a chemical vapor deposition reactor

    Get PDF
    Chemical vapor deposition (CVD) using precursors that are solids at operating temperatures and pressures, presents challenges due to their relatively low vapor pressures. In addition, the sublimation rates of solid state precursors in fixed bed reactors vary with particle and bed morphology. In a recent patent application, the use of fluidized bed (FB) technology has been proposed to provide high, reliable, and reproducible flux of such precursors in CVD processes. In the present contribution, we first focus on the reactor design which must satisfy fluidization,sublimation and CVD reactor feeding constraints. Then, we report masstransport results on the sublimation of aluminium acetylacetonate, a common precursor for the CVD of alumina films. Finally, we discuss the efficiency of the precursor feeding rate, we address advantages and drawbacks of the invention and we propose design modifications in order to meet the process requirements

    Keck Echellette Spectrograph and Imager Observations of Metal-poor Damped Lyα Systems

    Get PDF
    We present the first results from a survey of SDSS quasars selected for strong H I damped Lyα (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II λ1334 and Si II λ1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities. We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b ≤ 5 km s^(–1)) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s^(–1), we have measured low-metallicity DLA gas with [X/H] < –2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] < –2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z ~ 3 drops exponentially at [X/H] ≾ –3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < –4.0 are extremely rare, and could comprise only 8 × 10^(–7) of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars having masses of 30 M_⊙ < M * < 100 M_⊙. The observed ratio of [C/O] for values of [O/H] < –2.5 exceeds values seen in moderate metallicity DLA systems, and also exceeds theoretical nucleosynthesis predictions for higher mass Population III stars. We also have observed a correlation between the column density N(C IV) with [Si/H] metallicity, suggestive of a trend between mass of the DLA system and its metallicity

    Phase transition in a super superspin glass

    Full text link
    We here confirm the occurrence of spin glass phase transition and extract estimates of associated critical exponents of a highly monodisperse and densely compacted system of bare maghemite nanoparticles. This system has earlier been found to behave like an archetypal spin glass, with e.g. a sharp transition from paramagnetic to non-equilibrium behavior, suggesting that this system undergoes a spin-glass phase transition at a relatively high temperature, TgT_g \sim 140 K.Comment: 4 pages, 3 figure
    corecore