557 research outputs found

    MiRNAs as novel adipokines : obesity-related circulating MiRNAs influence chemosensitivity in cancer patients

    Get PDF
    Adipose tissue is an endocrine organ, capable of regulating distant physiological processes in other tissues via the release of adipokines into the bloodstream. Recently, circulating adipose-derived microRNAs (miRNAs) have been proposed as a novel class of adipokine, due to their capacity to regulate gene expression in tissues other than fat. Circulating levels of adipokines are known to be altered in obese individuals compared with typical weight individuals and are linked to poorer health outcomes. For example, obese individuals are known to be more prone to the development of some cancers, and less likely to achieve event-free survival following chemotherapy. The purpose of this review was twofold; first to identify circulating miRNAs which are reproducibly altered in obesity, and secondly to identify mechanisms by which these obesity-linked miRNAs might influence the sensitivity of tumors to treatment. We identified 8 candidate circulating miRNAs with altered levels in obese individuals (6 increased, 2 decreased). A second literature review was then performed to investigate if these candidates might have a role in mediating resistance to cancer treatment. All of the circulating miRNAs identified were capable of mediating responses to cancer treatment at the cellular level, and so this review provides novel insights which can be used by future studies which aim to improve obese patient outcomes

    Hydrogen bonding in acrylamide and its role in the scattering behavior of acrylamide-based block copolymers

    Get PDF
    Hydrogen bonding plays a role in the microphase separation behavior of many block copolymers, such as those used in lithography, where the stronger interactions due to H-bonding can lead to a smaller period for the self-assembled structures, allowing the production of higher resolution templates. However, current statistical thermodynamic models used in descriptions of microphase separation, such as the Flory-Huggins approach, do not take into account some important properties of hydrogen bonding, such as site specificity and cooperativity. In this combined theoretical and experimental study, a step is taken toward the development of a more complete theory of hydrogen bonding in polymers, using polyacrylamide as a model system. We begin by developing a set of association models to describe hydrogen bonding in amides. Both models with one association constant and two association constants are considered. This theory is used to fit IR spectroscopy data from acrylamide solutions in chloroform, thereby determining the model parameters. These parameters are then employed to calculate the scattering function of the disordered state of a diblock copolymer with one polyacrylamide block and one non-hydrogen-bonding block in the random phase approximation. It is then shown that the expression for the inverse scattering function with hydrogen bonding is the same as that without hydrogen bonding, but with the Flory-Huggins parameter χ replaced by an effective value χeff=χ+δχHB(f), where the hydrogen-bonding contribution δχHB depends on the volume fraction f of the hydrogen-bonding block. We find that models with two constants give better predictions of bond energy in the acrylamide dimer and more realistic asymptotic behavior of the association constants and δχHB in the limit of high temperatures

    Smart Cache: A Self Adaptive Cache Architecture for Energy Efficiency

    Get PDF

    Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas

    No full text
    Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth

    Interaction and engagement with an anxiety management app: Analysis using large-Scale behavioral data

    Get PDF
    © Paul Matthews, Phil Topham, Praminda Caleb-Solly. Background: SAM (Self-help for Anxiety Management) is a mobile phone app that provides self-help for anxiety management. Launched in 2013, the app has achieved over one million downloads on the iOS and Android platform app stores. Key features of the app are anxiety monitoring, self-help techniques, and social support via a mobile forum (“the Social Cloud”). This paper presents unique insights into eMental health app usage patterns and explores user behaviors and usage of self-help techniques. Objective: The objective of our study was to investigate behavioral engagement and to establish discernible usage patterns of the app linked to the features of anxiety monitoring, ratings of self-help techniques, and social participation. Methods: We use data mining techniques on aggregate data obtained from 105,380 registered users of the app’s cloud services. Results: Engagement generally conformed to common mobile participation patterns with an inverted pyramid or “funnel” of engagement of increasing intensity. We further identified 4 distinct groups of behavioral engagement differentiated by levels of activity in anxiety monitoring and social feature usage. Anxiety levels among all monitoring users were markedly reduced in the first few days of usage with some bounce back effect thereafter. A small group of users demonstrated long-term anxiety reduction (using a robust measure), typically monitored for 12-110 days, with 10-30 discrete updates and showed low levels of social participation. Conclusions: The data supported our expectation of different usage patterns, given flexible user journeys, and varying commitment in an unstructured mobile phone usage setting. We nevertheless show an aggregate trend of reduction in self-reported anxiety across all minimally-engaged users, while noting that due to the anonymized dataset, we did not have information on users also enrolled in therapy or other intervention while using the app. We find several commonalities between these app-based behavioral patterns and traditional therapy engagement

    Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas

    Get PDF
    Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth.</p

    Enhanced lifetime of methane bubble streams within the deep ocean

    Get PDF
    We have made direct comparisons of the dissolution and rise rates of methane and argon bubbles experimentally released in the ocean at depths from 440 to 830 m. The bubbles were injected from the ROV Ventana into a box open at the top and the bottom, and imaged by HDTV while in free motion. The vehicle was piloted upwards at the rise rate of the bubbles. Methane and argon show closely similar behavior at depths above the methane hydrate stability field. Below that boundary (∼520 m) markedly enhanced methane bubble lifetimes are observed, and are attributed to the formation of a hydrate skin. This effect greatly increases the ease with which methane gas released at depth, either by natural or industrial events, can penetrate the shallow ocean layers
    corecore