1,117 research outputs found
Application of a coupled aerosol formation: Radiative transfer model to climatic studies of aerosols
A sophisticated one dimensional physical-chemical model of the formation and evolution of stratospheric aerosols was used to predict the size and number concentration of the stratospheric aerosols as functions of time and altitude following: a large volcanic eruption; increased addition of carbonyl sulfide (OCS) or sulfur dioxide (SO2) to the troposphere; increased supersonic aircraft (SST) flights in the stratosphere; and, large numbers of space shuttle (SS) flights through the stratosphere. A radiative-convective one dimensional climate sensitivity study, using the results of the aerosol formation model, was performed to assess the ground level climatic significance of these perturbations to the stratospheric aerosol layer. Volcanic eruptions and large OCS or SO2 increases could cause significant climatic changes. Currently projected SS launches and moderate fleets of SST's are unlikely to upset the stratospheric aerosol layer enough to significantly impact climate
Infrared spectroscopy of simulated Martian surface materials
Mineralogy inferred from the Viking X-ray fluorescence spectrometry (XRFS) is compared with mineralogy indicated by spectral data. The comparison is done by taking laboratory spectra of Viking analog minerals. Both XRFS and infrared data are consistent with clays as the dominant SiO2 containing minerals on Mars. The X-ray fluorescence data might also be consistent with the dominance of certain mafic SiO2 igneous minerals, but the spectral data are probably inconsistent with such materials. Sulfates, inferred by XRFS, are consistent with the spectral data. Inferences following Mariner 9 that high-SiO2 minerals were important on Mars may have been biased by the presence of sulfates. Calcium carbonate, in the quantities indirectly suggested by XRFS are inconsistent with the spectral data, but smaller quantities of CaCO3 are consistent, as are large quantities of other carbonates
Early climate on earth-reduced gas models and early climate on Mars-reduced gas and obliquity models
At high obliquity, Martian polar ground temperatures could exceed the melting point of ice for considerable periods of time (approximately 90 Earth days). Under special conditions ice itself might melt. Carbon dioxide adsorbed on the Martian regolith is not expected to buffer the seasonal pressure wave except in the unlikely event that the soil pore size is very large (50 micron). For a basaltic soil composition the maximum CO2 that could be desorbed over obliquity time scales due to thermal forces is a few millibars. At low obliquities the atmospheric pressures may drop, desorbing the soil. The only means to achieve higher CO2 pressures is to have much higher planet-wide temperatures due to some greenhouse effect, or to be at an epoch before the regolith or carbonates formed. The water ice budget between north and south polar caps was considered and summer sublimation rates imply that the ice could be exchanged between the poles during obliquity cycles. A critical factor in the polar cap water budget is the interaction of water and dust. The origin of the Martian polar laminae is probably due to variations in this interaction
On the size and composition of particles in polar stratospheric clouds
Attenuation measurements of the solar radiation between 1.5 and 15 micron wavelengths were performed with the airborne (DC-8) JPL MARK 4 interferometer during the 1987 Antarctic Expedition. The opacities not only provide information about the abundance of stratospheric gases but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption (windows). The optical depth of PSCs can be determined for each window once the background attenuation, due to air-molecules and aerosol has been filtered out with a simple extinction law. The ratio of optical thicknesses at different wavelengths reveals information about particle size and particle composition. Among the almost 700 measured spectra only a few PSC cases exist. PSC events are identified by sudden reductions in the spectrally integrated intensity value and are also verified with backscattering data from an upward directed lidar instrument, that was mounted on the DC-8. For the selected case on September 21st at 14.40 GMT, lidar data indicate an optically thin cloud at 18k and later an additional optically thick cloud at 15 km altitude. All results still suffer from: (1) often arbitrary definitions of a clear case, that often already may have contained PSC particles and (2) noise problems that restrict the calculations of optical depths to values larger than 0.001. Once these problems are handled, this instrument may become a valuable tool towards a better understanding of the role PSCs play in the Antarctic stratosphere
Heterogeneous physicochemistry of the winter polar stratosphere
Present chemical theories of the Antarctic ozone hole assume that heterogeneous reactions involving polar stratospheric clouds (PSCs) are the precursor of springtime ozone depletions. However, none of the theories quantify the rates of proposed heterogeneous processed, and none utilize the extensive data base on PSC's. Thus, all of the theories must be considered incomplete until the heterogeneous mechanisms are properly defined. A unified treatment developed of the cloud related processes, both physical and chemical, and the importance of these processes using observation data is calibrated. The rates are compared competitive heterogeneous processes to place reasonable limits on critical mechanisms such as the denitrification and dechlorination of the polar winter stratosphere. Among the subjects addressed here are the physical/chemical properties of PSC's including their relevant microphysical, optical and compositional characteristics, mass transfer rates of gaseous constituents to cloud particles, adsorption, accommodation and sticking coefficients on cloud particles, time constants for condensation, absorption and other microphysical processes, effects of solubility and vapor pressure on cloud composition, the statistics of cloud processing of chemically active condensible species, rate limiting steps in heterogeneous chemical reactions, and the nonlinear dependence of ozone loss on physical and chemical parameters
Stratospheric dynamics
A global circulation model is being used to study the dynamical behavior of stratospheric planetary waves (waves having horizontal wavelengths of tens of thousands of kilometers) forced by growing cyclonic disturbances of intermediate scale, typically with wavelengths of a few thousand kilometers, which occur in the troposphere. Planetary scale waves are the dominant waves in the stratosphere, and are important for understanding the distribution of atmospheric trace constituents. Planetary wave forcing by intermediate scale tropospheric cyclonic disturbances is important for producing eastward travelling planetary waves of the sort which are prominent in the Southern Hemisphere during winter. The same global circulation model is also being used to simulate and understand the rate of dispersion and possible stratospheric climatic feedbacks of the El Chichon volcanic aerosol cloud. By comparing the results of the model calculation with an established data set now in existence for the volcanic cloud spatial and temporal distribution, stratospheric transport processes will be better understood, and the extent to which the cloud modified stratospheric wind and temperature fields can be assessed
Physical processes in polar stratospheric ice clouds
A one dimensional model of cloud microphysics was used to simulate the formation and evolution of polar stratospheric ice clouds. Some of the processes which are included in the model are outlined. It is found that the clouds must undergo preferential nucleation upon the existing aerosols just as do tropospheric cirrus clouds. Therefore, there is an energy barrier between stratospheric nitric acid particles and ice particles implying that nitric acid does not form a continuous set of solutions between the trihydrate and ice. The Kelvin barrier is not significant in controlling the rate of formation of ice particles. It was found that the cloud properties are sensitive to the rate at which the air parcels cool. In wave clouds, with cooling rates of hundreds of degrees per day, most of the existing aerosols nucleate and become ice particles. Such clouds have particles with sizes on the order of a few microns, optical depths on order of unity and are probably not efficient at removing materials from the stratosphere. In clouds which form with cooling rates of a few degrees per day or less, only a small fraction of the aerosols become cloud particles. In such clouds the particle radius is larger than 10 microns, the optical depths are low and water vapor is efficiently removed. Seasonal simulations show that the lowest water vapor mixing ratio is determined by the lowest temperature reached, and that the time when clouds disappear is controlled by the time when temperatures begin to rise above the minimum values
Analysis of Spitzer Spectra of Irradiated Planets: Evidence for Water Vapor?
Published mid infrared spectra of transiting planets HD 209458b and HD
189733b, obtained during secondary eclipse by the InfraRed Spectrograph (IRS)
aboard the Spitzer Space Telescope, are predominantly featureless. In
particular these flux ratio spectra do not exhibit an expected feature arising
from water vapor absorption short-ward of 10 um. Here we suggest that, in the
absence of flux variability, the spectral data for HD 189733b are inconsistent
with 8 um-photometry obtained with Spitzer's InfraRed Array Camera (IRAC),
perhaps an indication of problems with the challenging reduction of the IRS
spectra. The IRAC point, along with previously published secondary eclipse
photometry for HD 189733b, are in good agreement with a one-dimensional model
of HD 189733b that clearly shows absorption due to water vapor in the emergent
spectrum. We are not able to draw firm conclusions regarding the IRS data for
HD 209458b, but spectra predicted by 1D and 3D atmosphere models fit the data
adequately, without adjustment of the water abundance or reliance on cloud
opacity. We argue that the generally good agreement between model spectra and
IRS spectra of brown dwarfs with atmospheric temperatures similar to these
highly irradiated planets lends confidence in the modeling procedure.Comment: Revised, Accepted to ApJ Letter
Theoretical Investigations of Clouds and Aerosols in the Stratosphere and Upper Troposphere
support of the Atmospheric Chemistry Modeling and Data Analysis Program. We investigated a wide variety of issues involving ambient stratospheric aerosols, polar stratospheric clouds or heterogeneous chemistry, analysis of laboratory data, and particles in the upper troposphere. The papers resulting from these studies are listed below. In addition, I participated in the 1999-2000 SOLVE mission as one of the project scientists and in the 2002 CRYSTAL field mission as one of the project scientists. Several CU graduate students and research associates also participated in these mission, under support from the ACMAP program, and worked to interpret data. During the past few years my group has completed a number of projects under th
Influence of Nucleation Mechanisms on the Radiative Properties of Deep Convective Clouds and Subvisible Cirrus in CRYSTAL/FACE
During the past few years we have conducted work on several different topics, as reflected by our publications. As one of the Co-Project scientists for The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL FACE) we worked to help design the mission and then conduct it in the field. Another major activity during the past two years has been to pull together various groups to formulate plans for follow on missions to CRYSTAL FACE. We organized a workshop at the University of Colorado during the summer of 2003 to assess the best locations for future missions. Working with a group of about 10 scientists from around the country we prepared a science-planning document (Tropical Composition, Cloud and Climate Coupling Experiment (TC(sup 4)) that outlined the rationale, locations, strategy to accomplish the goals, and possible payloads for a set of three tropical missions. We also prepared background materials for various NRAs being prepared at NASA Headquarters for missions in Costa Rica, Darwin and Guam. In conjunction with the group at NASA Ames we have helped build a new numerical model for deep convection and have applied that model to simulate the CRYSTAL data. Our goal in particular has been to better understand how convection distributes water vapor isotopes. CRYSTAL observations of water isotopes are very different from those suggested by previous workers who assumed the isotopes would obey Rayleigh fractionation. The water isotope study has several implications. First it is a check on the realism of the deep convection model. Second, the isotopes are a measure of the precipitation removal in the atmosphere. Hence they provide a constraint on a parameter that is difficult to otherwise measure. Finally it has been suggested that isotopes may be the key to unraveling the water transport into the stratosphere and upper troposphere. Such transport is critical both for the radiation balance and for stratospheric chemistry. Ours is the first model that is able to treat this transport. Our initial results have just been submitted to Geophys. Res. Lett (Smith et al., 2005). Essentially we are able to explain the vertical profiles of isotopes in the tropical tropopause transition layer. We are also able to account for stratospheric humidity and isotope abundances with this model. We have also been heavily involved in trying to improve our understanding of nitric acid condensation on ice. Gao et al (2004) have shown that water supersaturations above ice occur when the atmosphere is supersaturated with respect to nitric acid trihydrate. As one of the co-authors of that work, we suggested the mechanism that may explain why this is occurring. Essentially, ice does not like to grow near unit supersaturation, but does so because the water molecules can find sites on the ice surface to attach themselves to before they fly off the ice surface. This phenomena was well known in the 1960s when it was a source of debate about whether condensation and evaporation coefficients for ice would be the same. Evaporation does not require any molecular orientation, while condensation does, so it was possible that the coefficients would differ. They don't differ because the water molecules rapidly move across the surface and find places to attach. Nitric acid may be occupying these preferred sites and therefore the water molecules can't find a desirable place to attach. We anticipate that this research will be the subject of laboratory work during the coming few years. Another possibility that has been suggested is that cubic ice is forming in clouds. We have measured the vapor pressure of cubic ice, and plan to publish that result in the next few months. We have also been working on additional aspects of the condensation of nitric acid on ice. With Y. Kondo we studied the condensation of NOy on ice using the SOLVE data. Gamblin et al. have continued this work. The CRYSTAL NOy and HNO, groups have shown th their data can be fit using standard Langmuir isotherms as suggested in some, but not all, laboratory studies. We have found in the SOLVE data set that this is not the case. Moreover some laboratory studies show there are important kinetic effects that may be occurring in the atmosphere limiting the transfer of nitric acid to the ice. The SOLVE data seem consistent with these studies. We are currently re-analyzing the CRYSTAL data to look for these kinetic effects. There are a number of implications of these studies. One of the more interesting is that the nitric acid coating on ice can be used as a cloud clock to determine how long the cloud parcel has been in existence. We have also been involved with several laboratory studies. We have worked to improve the database on ice optical constants, which are critical for remote sensing. We have also studied the ways in which ice nucleates on clays. We suspect now that the standard theories used for depositional ice nucleation are completely incorrect. Further work will be needed to develop a new theory
- …