34 research outputs found

    CCL2 modulates cytokine production in cultured mouse astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemokine CCL2 (also known as monocyte chemoattractant protein-1, or MCP-1) is upregulated in patients and rodent models of traumatic brain injury (TBI), contributing to post-traumatic neuroinflammation and degeneration by directing the infiltration of blood-derived macrophages into the injured brain. Our laboratory has previously reported that <it>Ccl2</it>-/- mice show reduced macrophage accumulation and tissue damage, corresponding to improved motor recovery, following experimental TBI. Surprisingly, <it>Ccl2</it>-deficient mice also exhibited delayed but exacerbated secretion of key proinflammatory cytokines in the injured cortex. Thus we sought to further characterise CCL2's potential ability to modulate immunoactivation of astrocytes <it>in vitro</it>.</p> <p>Methods</p> <p>Primary astrocytes were isolated from neonatal wild-type and <it>Ccl2</it>-deficient mice. Established astrocyte cultures were stimulated with various concentrations of lipopolysaccharide (LPS) and interleukin (IL)-1β for up to 24 hours. Separate experiments involved pre-incubation with mouse recombinant (r)CCL2 prior to IL-1β stimulation in wild-type cells. Following stimulation, cytokine secretion was measured in culture supernatant by immunoassays, whilst cytokine gene expression was quantified by real-time reverse transcriptase polymerase chain reaction.</p> <p>Results</p> <p>LPS (0.1-100 μg/ml; 8 h) induced the significantly greater secretion of five key cytokines and chemokines in <it>Ccl2</it>-/- astrocytes compared to wild-type cells. Consistently, IL-6 mRNA levels were 2-fold higher in <it>Ccl2</it>-deficient cells. IL-1β (10 and 50 ng/ml; 2-24 h) also resulted in exacerbated IL-6 production from <it>Ccl2</it>-/- cultures. Despite this, treatment of wild-type cultures with rCCL2 alone (50-500 ng/ml) did not induce cytokine/chemokine production by astrocytes. However, pre-incubation of wild-type astrocytes with rCCL2 (250 ng/ml, 12 h) prior to stimulation with IL-1β (10 ng/ml, 8 h) significantly reduced IL-6 protein and gene expression.</p> <p>Conclusions</p> <p>Our data indicate that astrocytes are likely responsible for the exacerbated cytokine response seen <it>in vivo </it>post-injury in the absence of CCL2. Furthermore, evidence that CCL2 inhibits cytokine production by astrocytes following IL-1β stimulation, suggests a novel, immunomodulatory role for this chemokine in acute neuroinflammation. Further investigation is required to determine the physiological relevance of this phenomenon, which may have implications for therapeutics targeting CCL2-mediated leukocyte infiltration following TBI.</p

    A missense mutation (c.184C>T) in ovine CLN6 causes neuronal ceroid lipofuscinosis in Merino sheep whereas affected South Hampshire sheep have reduced levels of CLN6 mRNA

    Get PDF
    AbstractThe neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of fatal recessively inherited neurodegenerative diseases of humans and animals characterised by common clinical signs and pathology. These include blindness, ataxia, dementia, behavioural changes, seizures, brain and retinal atrophy and accumulation of fluorescent lysosome derived organelles in most cells. A number of different variants have been suggested and seven different causative genes identified in humans (CLN1, CLN2, CLN3, CLN5, CLN6, CLN8 and CTSD). Animal models have played a central role in the investigation of this group of diseases and are extremely valuable for developing a better understanding of the disease mechanisms and possible therapeutic approaches. Ovine models include flocks of affected New Zealand South Hampshires and Borderdales and Australian Merinos. The ovine CLN6 gene has been sequenced in a representative selection of these sheep. These investigations unveiled the mutation responsible for the disease in Merino sheep (c.184C>T; p.Arg62Cys) and three common ovine allelic variants (c.56A>G, c.822G>A and c.933_934insCT). Linkage analysis established that CLN6 is the gene most likely to cause NCL in affected South Hampshire sheep, which do not have the c.184C>T mutation but show reduced expression of CLN6 mRNA in a range of tissues as determined by real-time PCR. Lack of linkage precludes CLN6 as a candidate for NCL in Borderdale sheep

    Deletion of Murine SMN Exon 7 Directed to Skeletal Muscle Leads to Severe Muscular Dystrophy

    Get PDF
    Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA

    The Design of a Best Execution Market

    Get PDF
    The notion of best execution on securities markets is manifold. Best execution has different meanings to different market participants, therefore, it is difficult to find a unique market structure that meets this requirements for all the participants. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the concrete market structure’s characteristics, like e. g. the price discovery mechanism, trading frequency or the market transparency. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the Focussing on customer orientation, we propose a new type of market structure: the dynamic market model, where participants individually choose the characteristics of the market structure for each transaction they perform. Furthermore, this paper offers an approach to design dynamic market models from scratch. We briefly sketch the necessary steps towards a dynamic market model. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the Finally, we present AMTRAS; the prototype of an electronic trading system that was conceived and implemented following the aforementioned approach. AMTRAS is an software-agent based bond trading system designed for the need of institutional investors. It implements a dynamic market model, a sophisticated product- and partner matching scheme as well as an innovative price discovery approach

    CREATION ET CARACTERISATION DE MODELES MURINS DE L'AMYOTROPHIE SPINALE

    No full text
    PARIS5-BU-Necker : Fermée (751152101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Etude des mécanismes d'altération par l'eau du verre R7T7 en milieu confiné (compréhension et modélisation de la cinétique résiduelle)

    No full text
    MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF
    corecore